The 1/Nc Expansion at the Hadronic Level

José L. Goity Hampton University/Jefferson Lab

XII Mexican Workshop on Particles and Fields Mazatlán, November 2009

José L. Goity Hampton University/Jefferson Lab The 1/Nc Expansion at the Hadronic Level

イロト 不得下 イヨト イヨト

OUTLINE

- Introduction
- Mesons and Glueballs in $1/N_c$
- Baryons in $1/N_c$
- $1/N_c$ in BChPT
- Comments and outlook

・ロン ・聞と ・ほと ・ほと

3

Introduction

- Started in Stat. Mech. in 1968 (Stanley): expansion in 1/N, N: number of internal degrees of freedom.
- Applied to various field theory models to study non-perturbative dynamics.
- Introduced in gauge theories in 1974 ('tHooft): $SU(N_c)$ gauge theory admits expansion in $1/N_c$.
- One "solved" case: QCD₂. Full analysis of meson sector to leading order in $1/N_c$. Sub-leading order still open problem. Too simple to shed light on real world QCD.
- QCD: $1/N_c$ expansion still an open theoretical problem.
- It can be implemented at hadronic level through effective theories!

ヘロト 人間ト 人団ト 人団ト

Basic idea

System with N degrees of freedom $(\phi_i, i = 1, \dots, N)$ Partition function (Euclidean path integral):

$$Z = \int \{D\phi_i\} \exp(-S[\{\phi_i\}])$$

Assume the action is of the form: $S[\{\phi_i\}] = N S_0[\{\psi_i\}], \psi_i = \sqrt{N}\phi_i$ Naively expectation is dominance of least action trajectories (semiclassical limit), but PI measure has large entropy Focus only in "colorless" degrees of freedom

$$\sigma(x,y) = \sum_{i} \psi_i(x)\psi_i(y)$$

$$Z = \int D\sigma J(\sigma) \, \exp(-N \, S'[\sigma]) = \int D\sigma \, \exp(-N \, S_{\text{eff}}[\sigma])$$

Large $N \Rightarrow$ saddle point dominance of S_{eff} : semiclassical limit

Solvable models in $N\to\infty$ limit: QM, spin-models, O(N) and CP^N sigma models, etc.

1/N corrections have been calculated in some of these models

SU(N) Gauge Theory

$$\mathcal{L} = \frac{1}{4g^2} G^a_{\mu\nu} G^{\mu\nu a}, \qquad a = 1, \cdots, N^2 - 1$$

Large N: $g^2 = g_0^2/N$ Wilson loops: loop equations Other approaches: "master field" reduction (Eguchi-Kawai and variants thereof) String/Gauge Theory correspondence: not yet clear how it applies to QCD

Bottom up approach to $1/N_c$ expansion still a work in progress.

イロト イポト イヨト イヨト 二日

$1/N_c$ Expansion in QCD

Follow 'tHooft's approach of organizing Feynman diagrams 'tHooft expansion: $1/N_c$ at N_f fixed, Veneziano expansion: N_f/N_c fixed.

• 'tHooft expansion:

イロト イポト イヨト イヨト

 $1/N_c$ as topological expansion: $1/N_c^{\chi}$ $\chi = -2 + \#$ holes + 2 # handles + # edges Main non-perturbative quantities: look at diagrams which can contribute and deduce the $1/N_c\,\,{\rm power}$

 $\sigma = \mathcal{O}(N_c^0) \quad \langle \bar{q}q \rangle = \mathcal{O}(N_c) \quad \alpha_s \langle G_{\mu\nu} G^{\mu\nu} \rangle = \mathcal{O}(N_c)$

- Key observation: $1/N_c$ expansion can be identified at hadronic level and built into effective theories.
- Two essentially different sectors: glueballs+mesons, and baryons

イロト イポト イヨト イヨト

MESONS & GLUEBALLS

Mesons	Glueballs
$M = \mathcal{O}(N_c^0)$	$M = \mathcal{O}(N_c^0)$
$\Gamma = \mathcal{O}(1/N_c)$	$\Gamma = \mathcal{O}(1/N_c^2)$
$F_M = \mathcal{O}(\sqrt{N_c})$	$F_M = \mathcal{O}(N_c)$
OZI rule: $\Gamma_{OZI} = \mathcal{O}(1/N_c^3)$	OZI rule: $\Gamma_{OZI} = \mathcal{O}(1/N_c^2)$
$\sigma = \mathcal{O}(1/N_c^2)$	G-meson mixing= $\mathcal{O}(1/\sqrt{N_c})$
nonet symmetry	
$M_{\eta'}^2 = \mathcal{O}(N_f/N_c)$ in χ limit	

- Phenomenological evidence: multiple excited mesons with widths $\mathcal{O}(100~{\rm MeV})$
- OZI: in ϕ meson and quarkonia for instance
- $\bullet\,\, {\rm Test}$ of $1/N_c^2$ corrections to $m_G/\sqrt{\sigma}$ in Lattice gluodynamics

(周) () () () ()

• $1/N_c$ suppression of certain LECs in ChPT

losé L. Goity Hampton University/Jefferson Lab The 1/Nc Expansion at the Hadronic Level

• Illustrative tests

• OZI suppression:
$$\Gamma_M^{OZI} = \mathcal{O}(1/N_c^3)$$

$$\frac{\frac{\Gamma(\phi \to \rho \pi + 3\pi)}{\Gamma(\phi \to KK)} \sim 0.2}{\frac{\Gamma(J/\psi \to hadrons)}{\Gamma(J/\psi \to \ell^+ \ell^-)} \sim 7.5}$$
$$\frac{\frac{\Gamma(\rho \to \pi\pi)}{\Gamma(\rho \to \ell^+ \ell^-)} \sim 10^4$$

• Lattice gluodynamics: ratio $\frac{m_G}{\sqrt{\sigma}} = \mathcal{O}(1) + \mathcal{O}(1/N_c^2)$

イロト イポト イラト イラト

Axial Anomaly and the η' Mass

Spontaneous breaking of $U_A(1)$ by $< q\bar{q}>< 0$ condensate \Rightarrow Goldstone Boson η'

 $<\eta'(k) \mid A^{\mu} \mid 0> = ik^{\mu}\sqrt{N_f}F_0 \qquad F_0 = \mathcal{O}(\sqrt{N_c})$

Axial anomaly:

 $\partial_{\mu}A^{\mu}(x) = N_f q(x)$ $q(x) = \frac{\alpha_s}{8\pi}G\tilde{G}$

$$< \eta'(k) \mid \partial_{\mu} A^{\mu}(x) \mid 0 > = N_{f} < \eta'(k) \mid q(x) \mid 0 >$$
$$M_{\eta'}^{2} = \frac{\sqrt{N_{f}}}{F_{0}} < \eta'(k) \mid q(0) \mid 0 > = \mathcal{O}(1/N_{c})$$

イロン イ部ン イヨン イヨン 三日

Topological Susceptibility and Witten-Veneziano Formula θ dependence of vacuum energy:

$$Z^{E}_{QCD}(\theta) = \int DG \ D\psi \ D\bar{\psi} \ e^{-S_{QCD}+i \ \theta \ Q}$$
$$Q = \int d^{4}x \ q(x) \in \mathbb{Z} \quad \Rightarrow \quad Z^{E}_{QCD}(\theta) = Z^{E}_{QCD}(\theta + 2\pi)$$

Massless quarks: θ dependence disappears due to axial anomaly

$$e^{i\alpha} \in U_A(1) \Rightarrow \theta \to \theta + \alpha$$

heta dependence $\propto m_u imes m_d imes m_s$ Pure YM part

$$Z_{YM}^E(\theta) = e^{-V_4 F(\theta)}$$

$$\chi_{YM} = \frac{\partial^2 F(\theta)}{\partial \theta^2} \bigg|_{\theta=0} = \frac{\langle Q^2 \rangle}{V_4} = \int \langle q(x)q(0) \rangle \, d^4x$$

- 4 回 ト - 4 回 ト - -

In QCD with massless quarks $\chi_{QCD} = 0$:

$$\begin{cases} \int d^4x e^{ikx} < q(x)q(0) >_{quarks} \\ |_{large \ N_c} \end{cases} + \dots + \\ = -\int d^4x \sum_n < 0 \mid q(x) \mid n, k > < n, k \mid q(0) \mid 0 > \frac{1}{k^2 + M_n^2} \\ = -\sum_n \frac{c_n F_n^2 M_n^4}{k^2 + M_n^2} \end{cases}$$

This cancels χ_{YM} . η' contribution: $-4 \frac{M_{\eta'}^2 F_{\eta'}^2}{N_f}$ Large N_c limit η' dominates the sum:

$$M_{\eta'}^2 = 4 \frac{N_f}{F_{\eta'}^2} \chi_{YM} \Rightarrow \chi_{YM} \sim (166 \text{ MeV})^4$$

<ロ> (四) (四) (三) (三) (三) (三)

$\chi_{_{\rm YM}}$ in Instanton Model

YM vacuum as ensemble of I + A I carries Q = 1Collective coordinates: $(z_{\mu}, U, \rho) (4, 4N_c - 5, 1)$ Action: $S_0 = \frac{4\pi}{\alpha_s} = \frac{4\pi N_c}{\alpha_0}$

$$\alpha_s \to \alpha_s(\rho) = -\frac{8\pi}{b \log(\rho\Lambda)} \qquad b = \frac{11}{3}N_c$$

$$Z_{I+A}(\theta) = \sum_{N_I, N_A} Z(N_I, N_A, \theta)$$

$$Z(N_I, N_A, \theta) = \frac{e^{i\theta(N_I - N_A)}}{N_I! N_A!} \int \prod_i (d\Omega_i \ e^{-S_0(i)}) \ e^{-\sum_{i < j} S_{int}(i,j)}$$

$$d\Omega = \left(\frac{4\pi}{\alpha_s}\right)^{2N_c} \rho^{-5} \ d^4z \ dU \ d\rho$$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

3

Model for interaction (Diakonov & Petrov)

$$S_{int} = -\frac{16\pi}{\alpha_s} \frac{\rho^2 \rho'^2}{z^4} f(U, U')$$

$$\bar{S}_{int} = \frac{4\pi}{\alpha_s} \frac{\kappa^2}{V_4} \frac{N_c}{N_c^2 - 1} \rho^2 \rho'^2$$

parameter κ^2 contains regularization needed to define \bar{S}_{int} Make a "mean field" approximation:

$$\sum_{i < j} \rho_i^2 \rho_j^2 \to N \rho^2 \sum_i \rho_i^2$$

イロト 不得下 イヨト イヨト

[Shuryak & Schäfer; Schäfer]

$$\begin{aligned} \kappa^2 &= \frac{27}{4}\pi\\ \bar{\rho^2} &\sim \frac{11}{\Lambda^2} \left(\frac{\alpha_0}{4\pi}\right)^{\frac{12}{11}} = \mathcal{O}(N_c^0)\\ \bar{\eta} &= \mathcal{O}(N_c)\\ \frac{\langle Q^2 \rangle}{V_4} &\sim \bar{\eta} \Rightarrow \chi_{YM} = \mathcal{O}(N_c) \end{aligned}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

José L. Goity Hampton University/Jefferson Lab The 1/Nc Expansion at the Hadronic Level

For $\chi_{VM} = \mathcal{O}(N_c^0)$ we need to modify the relation $\frac{\langle Q^2 \rangle}{V_c} \sim \bar{\eta}$

Take $S_{int}(I, I) \neq S_{int}(I, A)$: $\kappa_{II} > \kappa_{IA}$: $\Rightarrow \frac{\langle Q^2 \rangle}{V_4} \propto \bar{\eta}/N_c$

- 4 回 ト 4 ヨ ト 4 ヨ ト

$\chi_{\rm YM}$ from Lattice

[Vicari & Panagopoulos review]

Good agreement with value from W-V formula

向下 イヨト イヨト

- Need for N_c valence quarks to form a color singlet
- $M_B = \mathcal{O}(N_c), r_B = \mathcal{O}(N_c^0)$
- Hartree picture of baryons sufficient to figure out $1/N_c$ countings
- π -baryon couplings: $\frac{g_A}{F_{\pi}}\partial_i\pi_a G^{ia}$
- Axial currents G^{ia} have $\mathcal{O}(N_c)$ MEs $\implies g_{\pi BB} = \mathcal{O}(\sqrt{N_c})$
- $\Gamma_B = \mathcal{O}(N_c^0)$
- Model realizations of all of the above: QM, Skyrme model

イロト イポト イヨト イヨト

Contracted spin-flavor dynamical symmetry

Contracted spin-flavor symmetry: [Gervais & Sakita; Dashen & Manohar] S^{i} , T^{a} , $X^{ia} \equiv G^{ia}/N_{c}$: generators of contracted $SU(2N_{f})_{C}$

SU(2N_f) group with generators Sⁱ, T^a, G^{ia} can be used to build effective theory
Justifies SU(6) symmetry introduced in 1960's as dynamical symmetry in large N_c

Spin-flavor multiplets

Known states fit into **56** and **70**- plets of SU(6)No experimentally established **20**-plet or "pentaquark"type states

イロト イポト イヨト イヨト

Approximate O(3) symmetry

Baryons show approximate O(3) symmetry (small spin-orbit effects)

イロト イポト イヨト イヨト

3

• Effective operators

• Effective operators at baryon level

$$\hat{O}_{
m QCD} \quad \Rightarrow \quad \hat{O}_{
m eff} = \sum \left(\frac{1}{N_c}\right)^{\nu(j)} c_j \, \hat{O}_j$$

$$\nu(j) = n_j - 1$$
 for $n_j - body$ operator

- operator basis $\{\hat{O}_j\}$ can be ordered in powers of $1/N_c$
- c_{j} effective constants or form factors: determined by the QCD dynamics; expanded also in $1/N_{c}$ and quark masses
- Matrix elements

 $\langle B'_{GS} \mid \hat{O}_j \mid B_{GS} \rangle = \mathcal{O}(N_c^{\kappa(j)}) ; \quad \langle B_{GS} \mid \hat{O}_j \mid B^* \rangle = \mathcal{O}(N_c^{-\frac{1}{2} + \kappa(j)})$

 $\kappa(j)$ coherence factor of operator

(ロ) (四) (ヨ) (ヨ) (ヨ)

• Effective operators

$$\hat{O}_j = R_j \otimes \mathcal{G}_j$$

 R_j : O(3) tensor operator

 \mathcal{G}_j : spin-flavor tensor operator made out of product of n_j generators of $SU(2N_f)$

 $\kappa(\hat{O}_j) = \#G_{ia}$ or T^8 generators in \mathcal{G}_j

 Systematic way of building basis of *G_j* operators; numerous "reduction rules"

Baryon Masses

• Ground state baryons mass formula

Most general mass operator after applying various reduction rules valid for MEs in the S representation Up to $\mathcal{O}(1/N_c)$ and $\mathcal{O}(m_s)$: old Gürsey-Radicati mass formula

$$M_{GS} = c_1 N_c + \frac{c_{HF}}{N_c} \left(S^2 - \frac{3}{4} N_c \right) - c_s \frac{m_s - m_{u,d}}{\Lambda} S$$

Mass relations: deviations $\mathcal{O}(1/N_c^2;m_s^2/N_c)$ and also due to chiral loop corrections

GMO	$\Xi_8 - \Sigma_8 = \frac{1}{2}(3\Lambda - \Sigma_8) - N$	128 vs 141 MeV
ES	$\Sigma_{10} - \Delta = \Xi_{10} - \Sigma_{10}$	153 vs 145
"	$\Omega^{-} - \Xi_{10} = \Xi_{10} - \Sigma_{10}$	142 vs 145
8-10	$\Sigma_{10} - \Sigma_8 = \Xi_{10} - \Xi_8$	212 vs 195
"	$3\Lambda + \Sigma_8 - 2(N + \Xi_8) = \Xi_{10} + \Sigma_{10} - \Omega^ \Delta$	26 vs 11
8-10 "	$\begin{aligned} & \Omega &= \Xi_{10} = \Xi_{10} - \Xi_{10} \\ & \Sigma_{10} - \Sigma_8 = \Xi_{10} - \Xi_8 \\ & 3\Lambda + \Sigma_8 - 2(N + \Xi_8) = \Xi_{10} + \Sigma_{10} - \Omega^ \Delta \end{aligned}$	212 vs 145 212 vs 195 26 vs 11

- 4 回 ト 4 ヨ ト 4 ヨ ト

• Excited baryon mass formulas: [70, 1⁻] [JLG; Carlson et al.; JLG, Schat & Scoccola] core $N_c - 1$ \times $S_a^i, T_a^a, G_a^{ia} \qquad s^i, t^a, q^{ia}$ $O_{eff} = \sum \Lambda_c \times \lambda_{q^*} \times \lambda_{\ell} \qquad M_{70} = \sum c_n O_n + \sum d_m B_m$ n m SU(3) singlet SU(3) octet States in 70-plet:

2 8_{*J*=1/2}, 2 8_{3/2}, 1 8_{5/2}, 1 10_{1/2}, 1 10_{3/2}, 1 1_{1/2}, 1 1_{3/2}

• Operators:

 $\begin{array}{ll} & {\sf SU(3) \ singlets:} & 1 \ \mathcal{O}(N_c) \ ({\sf SU(6) \ singlet}), \ 4 \ \mathcal{O}(N_c^0) \ \text{and} \ 7 \\ & \mathcal{O}(1/N_c) \\ & {\sf SU(3) \ octets:} \ 3 \ \mathcal{O}(m_s N_c^0) \end{array}$

イロト イポト イラト イラト 二日

70-plet mass operators

 $Q_1 = N_c \, 1$ $\mathcal{O}(N_c)$ $Q_2 = \ell \cdot s$ $O_3 = \frac{3}{N} \ell_{ii}^{(2)} g^{ia} G_c^{ja}$ $\mathcal{O}(N_c^0)$ $O_4 = \frac{1}{N_c} \ell^i t^a G_c^{ia}$ $O_5 = \frac{1}{N_c} t^a T_c^a - \frac{1}{2\sqrt{3}N_c} O_1$ $O_6 = \frac{1}{N}\ell \cdot S_c$ $O_7 = \frac{1}{N} S_c^2$ $O_8 = \frac{1}{N} s \cdot S_c$ $O_9 = \frac{2}{N} \ell^{(2)ij} s^i S^j_c$ $\mathcal{O}(1/N_c)$ $O_{10} = \frac{3}{N^2} \ell^i g^{ja} \{S^j_c, G^{ia}_c\}$ $O_{11} = \frac{2}{N^2} t^a \{S_c^i, G_c^{ia}\}$ $O_{12} = \frac{3}{N^2} \ell^i g^{ia} \{S_c^j, G_c^{ja}\}$ $\bar{B}_1 = T_c^8 - \frac{N_c - 1}{2\sqrt{2}N}O_1$ $\bar{B}_2 = \frac{10}{N_c} \ d_{8ab} \ g^{ia} \ G_c^{ib} + \frac{5(N_c^2 - 9)}{8\sqrt{3}N^2(N_c - 1)} O_1 \quad \mathcal{O}(m_s)$ $+\frac{5}{2\sqrt{3}(N_{0}-1)}O_{6}+\frac{5}{6\sqrt{3}}O_{7}$ $\bar{B}_3 = 3 \ \ell^i \ q^{i8} - \frac{\sqrt{3}}{2}O_2$

José L. Goity Hampton University/Jefferson Lab The 1/Nc Expansion at the Hadronic Level

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

	Masses [MeV]			
Fit to <i>(</i> U-plet masses to NLU	State	Expt.	$1/N_c$	QM [Isgur-Karl]
	$N_{1/2}$	1538 ± 18	1541	1490
	$\Lambda_{1/2}$	1670 ± 10	1667	1650
	$\Sigma_{1/2}$	(1620)	1637	1650
	$\Xi_{1/2}$		1779	1780
CMO 2246 10 2272 10	$N_{3/2}$	1523 ± 8	1532	1535
GIVIU: 3340 ± 10 VS 3373 ± 10	$\Lambda_{3/2}$	1690 ± 5	1676	1690
	$\frac{\Sigma_{3/2}}{2}$	1675 ± 10	1007	10/5
	$=\frac{2}{3/2}$	1823 ± 5	1815	1800
	$N'_{1/2}$	1660 ± 20	1660	1655
	$\Lambda'_{1/2}$	1785 ± 65	1806	1800
	$\Sigma_{1/2}^{\prime}$	1765 ± 35	1755	1750
	$\Xi_{1/2}'$		1927	1900
	$N'_{3/2}$	1700 ± 50	1699	1745
	$\Lambda'_{3/2}$		1864	1880
	$\Sigma'_{3/2}$		1769	1815
	$\Xi_{3/2}'$		1980	1985
	$N_{5/2}$	1678 ± 8	1671	1670
	$\Lambda_{5/2}$	1820 ± 10	1836	1815
	$\Sigma_{5/2}$	1775 ± 5	1784	1760
	$\Xi_{5/2}$		1974	1930
	$\Delta_{1/2}$	1645 ± 30	1645	1685
	$\Sigma_{1/2}^{\prime\prime}$		1784	1810
	$\Xi_{1/2}^{\prime\prime}$		1922	1930
	$\Omega_{1/2}$		2061	2020
	$\Delta_{3/2}$	1720 ± 50	1720	1685
	$\Sigma_{3/2}^{\prime\prime}$		1847	1805
	$\Xi_{3/2}''$		1973	1920
	$\Omega_{3/2}$		2100	2020
	$\Lambda_{1/2}^{\prime\prime}$	1407 ± 4	1407	1490
	$\Lambda_{3/2}^{\prime\prime}$	1520 ± 1	1520	1490

José L. Goity Hampton University/Jefferson Lab

The 1/Nc Expansion at the Hadronic Level

 $) \in \mathbb{C}$

- Parameter free mass relations: true to \$\mathcal{O}(1/N_c^2; m_s^2/N_c)\$
 5 GMO, 2 ES, 4 new relations involving 8's, 10's and 1's Predict masses of several as yet unknown states in 70-plet
- Mixing angles

	$N_c \to \infty$	Masses	Strong decays	Helicity Amplitudes
$ heta_1$	54.4^{o}	30 ± 15^o	22 ± 7^{o}	-
θ_3	65.9^{o}	175 ± 15^o	161 or 136 ± 7^o	161 ± 7^{o}

- Hyperfine terms S_c^2 dominate spin-flavor breaking
- All $\mathcal{O}(N_c^0)$ operators in **70**-plets have small coefficients: three spin-orbit type and one of pure flavor type: approximate O(3) symmetry
- All $\mathcal{O}(1/N_c)$ operators other than S_c^2 give small corrections
- SU(3) breaking dominated by strangeness operator

イロト イポト イヨト イヨト

A new take on baryon Regge trajectories $\mathbf{M}_0(\ell)^2$ vs ℓ [JLG & Matagne]

Spin-flavor singlet component of baryon masses from analyses of all well and not so well known **56**-plets and **70**-plets:

 $[\mathbf{56}, 0^+]_{GS}$, $[\mathbf{56}, (2^+, 4^+, 6^+)]$, $[\mathbf{70}, (1^-, 2^+, 3^-, 5^-)]$

- $M_0^2[\mathbf{56}, \ell] = [(1.18 \pm 0.003) + (1.05 \pm 0.01) \, \ell] \, \text{GeV}^2$
- $M_0^2[\mathbf{70}, \ell] = [(1.13 \pm 0.02) + (1.18 \pm 0.02) \, \ell] \, \text{GeV}^2$
- $(M_0[\mathbf{70}, \ell] M_0[\mathbf{56}, \ell])^2 \simeq (5.7 + 4.2\,\ell) \times 10^{-4} \text{ GeV}^2$
- Splitting between trajectories $\mathcal{O}(N_c^0)$: due to exchange interaction. In magnitude smaller than expected.
- Regge trajectories with physical masses include contributions which do not have linear behavior.

• Strong indication of small **56-70** configuration mixings and good approximate O(3) symmetry

1/Nc Expansion in HBChPT: case of SU(2) to 1-loop [Flores-Mendieta, Hofmann, Jenkins & Manohar; JLG work in progress]

Heavy Baryon expansion: remove the spin-flavor singlet mass component M_0 from baryon field

Baryon field is a $\frac{(N_c+1)(N_c+2)(N_c+3)}{6}\text{-plet of }SU(4)$ (20-plet for $N_c=3)$

 $B = \left(\begin{array}{c} N\\ \Delta \end{array}\right)$

Two possible counting schemes:

i) $1/N_c = \mathcal{O}(p) = \mathcal{O}(\xi)$ ii) $1/N_c = \mathcal{O}(p^2) = \mathcal{O}(\xi^2)$

イロト イポト イヨト イヨト 二日

Since $M_\Delta - M_N > M_\pi$ scheme i) is correct one

Effective Lagrangian can be ordered in powers of $\boldsymbol{\xi}$

$$\mathcal{L} = \widetilde{iB^{\dagger} D_0 B} + \frac{6}{5} g_A B^{\dagger} u_{ia} G^{ia} B - \underbrace{\frac{\mathcal{O}(\xi)}{C_{HF}}}_{N_c} B^{\dagger} \overline{S^2} B + \underbrace{c_1 N_c \langle \chi_+ \rangle B^{\dagger} B}_{\mathcal{O}(\xi)} + \cdots$$
$$D_0 = \partial_0 + \frac{i}{4F_{\pi}^2} \epsilon_{abc} \pi^b \partial_0 \pi^c I^a + \cdots \quad u_{ja} = -\frac{i}{F_{\pi}} \partial_j \pi^a + \cdots$$

 $\langle \chi_+ \rangle = 4M_\pi^2 \quad F_\pi = 92.4 \text{MeV} \quad g_A = 1.267$

José L. Goity Hampton University/Jefferson Lab The 1/Nc Expansion at the Hadronic Level

Self-energy to 1-loop

$$\xi$$
-counting: $\nu = \sum_n (\nu_n - 1) + 3L + \frac{N_\pi}{2}$

$$\delta \Sigma^{1-loop} = i \frac{36}{25} \frac{g_A^2}{F_\pi^2} \frac{1}{3 - 2\epsilon} \sum_n G^{ia} \mathcal{P}_n G^{ia} I_{\Sigma}(p_0 - \delta m_n, M_\pi)$$

$$I_{\Sigma}(q,M) = \frac{i}{16\pi^2} \left(q(2q^2 - 3M^2)(\lambda_{\epsilon} + \frac{1}{3} - \log(M^2 - q^2) + 2\pi(M^2 - q^2)^{3/2} + 3q(q^2 - M^2)\frac{\partial}{\partial\nu} {}_2F_1(\frac{1}{2},\nu,\frac{3}{2},\frac{q^2}{q^2 - M^2})_{\nu \to 1} \right)$$
$$\lambda_{\epsilon} = \frac{1}{\epsilon} - \gamma + \log 4\pi$$

イロト イヨト イヨト イヨト 二百一

Renormalization

Consistency with $1/N_c$ counting: $p_0 \rightarrow p_0 + \delta m_{\rm in}$; expanding in p_0

$$\begin{split} \delta \Sigma_{UV}^{1-loop} &= -\frac{36}{25} \frac{g_A^2}{48 F_\pi^2} \lambda_\epsilon \\ &\times \left\{ 3C_{HF} M_\pi^2 (\frac{3}{8} (N_c + 4) + \frac{5}{N_c} \vec{S}^2) + \frac{C_{HF}^3}{N_c^2} (-\frac{3}{2} (N_c + 4) + (24 - \frac{5}{2} N_c (N_c + 4) \vec{S}^2)) \right. \\ &+ \left. p_0 \left(3M_\pi^2 (\frac{3}{16} N_c (N_c + 4) - \frac{1}{2} \vec{S}^2) + \frac{C_{HF}^2}{N_c^2} (\frac{9}{2} N_c (N_c + 4) + 3(N_c + 6)(N_c - 2) \vec{S}^2) \right) \right\} \end{split}$$

- All mass UV divergencies induced by ΔN mass splitting
- All finite mass terms $\mathcal{O}(\xi^2)$ induced by $\Delta-N$ mass splitting
- Finite $\mathcal{O}(\xi^3)$ terms but different than those as in ordinary BChPT due to Δ in loop

イロト 不得下 イヨト イヨト

Masses: 1-loop finite contributions $\mu = m_{\rho}$

José L. Goity Hampton University/Jefferson Lab

The 1/Nc Expansion at the Hadronic Level

COMMENTS and **OUTLOOK**

- $1/N_c$ expansion is very useful providing an additional ordering principle for hadron phenomenology
- This has been shown in both mesons and baryons
- Multiple applications to excited baryons: masses, strong decays, helicity amplitudes. More to be done
- Interesting to further investigate applications in BChPT
- Possible applications analyzing lattice results, especially for baryons: e.g. understand quark mass dependencies of effective coefficients in mass formulas

イロト イポト イヨト イヨト