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1. Clustering phenomenon in N and A spectra

Observation: M.K., MPLA 12 (1997)

N and A(1232) spectra reveal identical prominent
clustering patterns of the states with masses below
2500 MeV.

e The clusters are located in three mass regions, well
separated from each other by gaps of the order of
100-150 MeV.

e A cluster consists of one state of maximal spin,
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a total of (1 + 2K) states in a cluster (K=1,3,5)
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Clustering phenomenon in the A spectrum.
One loner front spin + K pillion spins,
a total of (1 + 2K) states in each cluster.
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Clustering phenomenon in the N spectrum.
One loner front spin + K pillion spins,
a total of (1 + 2K) states in each cluster.




GOAL:

Design a quark potential model that describes
this phenomenon.

Search for a potential that:

1. respects the space-time symmetries of the QCD
Lagrangian,

2. captures correctly the quark-gluon dynamics in all
three regimes,
e perturbative (~ 1/r potential)
e non-perturbative (~ r potential)

e asymptotic freedom (free quarks at small dis-
tances, trapped at long distances, as in the

infinite radial well),

3. can be placed within the context of the AdS/CFT

correspondence concept




The space-time symmetries of the QCD

Lagrangian

e ~ SO(2,4) conformal symmetry of the light-flavor
sector of QCD.
Conformal symmetry would require the N and
A spectra to fall each into an ood unitary
SO(2,4)representation in parallel to the confor-
mally invariant Maxwell equations which place the
spectrum of the H atom (as a whole) in a SO(4,2)
irrep of this type.

e 50(2,1)/50(4) symmetries of the perturbative
regime: In the perturbative regime the 1g exchange

gives raise to a 1/r interaction known to have
S0(2,1)/50(4) as potential algebras:

SO(2,4)>80(4) 5 SO(3) D SO(2)
SO(2,4)550(2,1) 5 SO(2)




2. The AdS/CFT correspondence concept...
D3 branes ((3+1)d world-volume) solve superg. eq. m.

D3 brane surrounded by 6 transversal dimensions,
1 radial + 5 angular (S°)

Near horizon geometry: D3 brane theory reduces
to a 4d super Yang-Mills on AdSy; x S°

Conformal boundary of AdS4,1 x S° at oo :
R '3 Minkowski space
Maldacena’s conjecture:

Zero-T super 4d Yang-Mills on the conformal
boundary equivalent to high-T 3d QCD.

Liischer, Mack (1975): Confinement as trapping on
finite volume and spectrum discretization. Compactify
R!T™3 conformally to R! x S and study hadrons there.
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...and Wilson loop potentials

Derive 3d quark confinement potentials

from AdS/CFT

Technique: Wilson loop (generalization of the
Ahronow-Bohm loop integral to non-Abelian theories)

< W(C) >= N, 5min

Smin: minimal area inside the contour C,

o string tension

e rectangular loop + cut off: Coulombic +linear

potential (Cornell pt.)

e deformed gravitational bulks: non-perturbative
corrections to the Cornell potential

e open strings with ends on Rindler space (portion of
Minkowski space adapted to an observer at constant

acceleration) produces the sech? potential.
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3. Spectra from R! x S? trapping

—i Bt

Factorizing R! time, e , reduces the problem

to the stationary Schrodinger equation on S

Geodesic motion on S? is described in terms of

the squared 4D-angular momentum, K2,

Op, = ——/c2 1/R* =k

4 R2
1 0 0 L?
2= | — 5 Sin2x - — :
sin® y 0x dx  sin”y

k: constant positive curvature

h? h?
—— kK3 KIm >=—xrK(K +2)|Klm >,
214 21
52,
Brc(n)="y “(K +17 - 1

[ =0,1,2,..K degeneracy: SO(4) potential algebra
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Robertson-Walker (polar) parametrization of S3.

Different reading of the K? eigenvalue problem on S°

upon changing to ¥ (x, k) = sin xS(x, k):

h? d?
_liﬂd—XQ +Ui(x, k) | S(x, k)=Ek(k)S(X, K),
;2
Ui (x, m):&ﬂl(l + 1) csc? x,

csc? as standard centrifugal barrier on S°




The potential algebra does not change upon adding
to the csc? y the harmonic cot y function, K2 cot y = 0.

52
— mZ/CQjLG\/EcotX — E(K)}X(X, k) =0

Solved in:

[Compean, M.K., J. Phys. A:Math.Gen. 39 (2006)]

cot x is the exactly solvable extension of the
Wilson loop/Lattice Coulombic +linear potential

by phenomenological non-perturbative corrections:

1 1 > 2x°
V(x, k)=2G —— 4+ = = 4
(x, k) \/E< X—I—gx—|—45—|—945-|— )

Rrﬂ I(1+1)
2 Xx?

+.., x=rVk




Solutions require non-classical

Romanovski polynomials

R(a,ﬁ)(x):eacot_lx(l —|-$2)_B+1
X_ne—ozcot_lw(l _i_x2)ﬁ—1—|—n,

where x = cot x

Reviewed in:
[Raposo, Weber, Alvarez-Castillo,M.K., C. Eur. J. Phys. (2007)]

The cot + csc? spectrum is

G2 1 B
EK(/{):_ n2 (K—I— 1)2 T /{ﬂ((K—F 1)2 - 1)7

2
[=0,1,2, ..., K.

and reveals SO(4) as potential algebra again.
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4. Dressing function of the gluon propagator

Gluon propagator in Landau gauge:

ab . 4duqv G(QQ) ab

G,UJ/:_Z[(Q,LW_ ;2 ) qg ]5 )
H _1
G(q2):(1—|—i q(;])) ,

“Dressing” function G(q*) ~ ¢, finite in the infrared

Fourier transform of cot y with the

S3 integration volume

(|q))=—2G/R / " dlal|2[*5(2] - R) / "y

" 3/ .2 i|q|¥EX | cos O
/ df sin 0 / dy sin® ye ' VE cot x
0 0/%

with

sin x

igw _ ilallr[cosd _ jilal 7= cost

€




Result:

2 4 6
2 _o,.u29 94 9 q
G(q“)=2csin 5 = ¢ o7 + i ),
2
C:QGT’M.
h°K

2
Gl9” finite at origin, in accord with lattice QCD
a
and Dyson-Schwinger approaches

Compean, Kirchbach, J.Phys. A:Math.Theor. 42 (2009)
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5. AdSs.,1 confinement by the sech? potential

Change variables in the —%IC2 eigenvalue problem to

1
coshy’

siny = cosx = tanhy, R(x)=Y(y).

and obtain 1D Schr. eq. with the Poschl-Teller pot.

_ [dd; Lo ] Y (y)=— (l+ ;)2Y(y),

cosh? Yy
G=0
h°k
COMPARE THIS TO:
2 Ji-1 , 1
- — Y(y)=| — — — Y
[ dyQ —|_ C()Sh2 y:| (y) |: j 4:| AdSQ+1 (y)




e J?: squared 3D pseudo-angular (SO(2,1) ) mom.
e 73: pseudo-magnetic (SO(2,1)) quantum number

Equalizing both eqgs. amounts to

e T*Y(y)=3j(j — 1Y (y) =11+ 1)Y(y),
implying j =1+ 1,

° j%Y(y) = (m')?Y (y) = €Y (y), meaning,
m =j4+n,=1+1+n,.=K+1,

which recovers the cot spectrum on R! x §3

NOW as Jg? spectrum on the one-sheet AdSs.1
hyperboloid H ;™' :

H "' -6 -6 =—-R




Pseudo-magnetic quantum number, m’, limited

from below, unlimited from above:

T=Y (y)=m"Y (y), =j+n, n-=01,23,..
o é’m = J=1+1/2
6;%{5 fffff E 77777 EZ é = J=I-12
- m )
T EEEE
- ' Y
4 #0- 77777 ;z Q/

3 #;:-: ——> S0(4) levels (CFT,)

0O 1 2 3 4 5
ood SO(2,1) unitary irreps D;r(Hl_‘Hn’”)
put up to a SO(2,4) unitary irrep

17—




Identify m’ = K + 1 with n, the principal qnt. nmbr.

n —

{K+1, for SO(4), with K+1=I14+1+n,,
/

m' for SO(2,1), withm' =j+n,, j=1+1.

Energy of geodesic motion on AdSs ;1 given in terms

of J% eigenvalues as
en=n>=(Gi+n.)2=(1+1+n,)>

[=0,1,2,...,n—1 degeneracy.

Geodesic motions on S2/H;™' characterized

by same degeneracies




Recapitulate:

e csc? potential on S? dual to Wilson loop potential
sech? on the AdS,,; hyperboloid H 11+1

e R! x §3 /AdSs,1 duality implies dual SO(2,1) and
SO(4) potential algebras.

e Spectrum as a whole falls into a SO(4,2) irrep in

accord with the ~conformal inv. of QCD Lagrangian.

e Symmetries of perturbative regime promoted to
degeneracy symmetries.

Inclusion of cot conserves the SO(4)/SO(2,1)
dual potential algebras and the dynamical SO(2,4)

algebra as well as visible from the energy solutions.




3. N and A spectra from cot + csc?

h? G
V(x,k)=k—I(l + 1) csc* x + —= cot ¥,

2 VK

Virtues of cot + csc?:

e describes interaction between effective quark-diquark
degrees of freedom on curved (S3/H ") spaces with

the curvature absorbing many-body effects,

e embeds the Cornell potential as small angle approx-
imation,
e provides a phenomenological non-perturbative cor-

rections beyond the Coulombic+linear terms,

e captures adequately the quark-gluon dynamics of all
three regimes of QCD.




Infinite wall (asymptotic freedom)

Infinite well piece = asymptotic freedom.

Gluon flux tube (string)

Linear piece=- flux-tube interactions.

Coulomb piece = 1g exchange

o




Fitting potential parameters to the N spectrum gives
G = 237.55 MeV- fm, k = 0.019 fm ~2, 4t = 1.057 fm 1.

.
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S0O(2,1)/S50(4) dual symmetry patterns in the N spectrum.
Prominent in the complete data set.
The completely missing m’ = 3,5 for any [
are built on top of a scalar diquark.
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SO(2,1)/50(4) dual symmetry patterns in the A spectrum,
k = 0.011fm~2. Prominent in the complete data set.
The completely missing m’ = 3,5 for any [
are built on top of a scalar diquark.

A total of 33 “missing” N and A resonances.




6. Comparison to the light cone spectra

“holographic” principle:

AdS/CFT conjectures correspondence between
gravity on AdS4y+1 and CFT,;. For d = 1 this
amounts to light-ray holography. In parallel,
CFT, is viewed as “holographic” projection of
AdSg11. A “holographic” relation may exist
also between any QFT and some of its lower
dimensional CFT"s.

Simplest example:

e Chiral conformal holographic image of 2d massive
QFT, so called light-ray restriction quantization,

amounts to light-cone quantization formalism.

| Teramond, Brodsky, PRL 84, 201601 (2005)]




Amounts to solving 2d Schrodinger equation

_dvs v’ — 5
d¢> ¢?

Wave-functions:

\If_|_ —|— (KJ4C2 —|— 2/‘62(V —|— 1))\If+ p— M2\If_|_.

v+
Uy =y 2

N|—
ml
N
t~
3 R
A~
<
~—
N~
|
N
N
Iy
N

Mass spectrum:

M? =4k*N, N=n+v+1

Degeneracy v =0,1,2,...., N — 1

Identification” v = L + 1 with L from SU(6)sr X O(3)L.
strong overlaps between SU(6)sr x O(3)r multipelts found.

implying L. = 0,1,2, N — 2. In coupling to this S =
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Clustering phenomenon in the light-cone A spectrum.
N=Il4+n+1=4and N=14+n+1=6
conformal SO(4) levels get mixed up to a

N = L +n+ 1 = 6 non-conformal level. Artifact

of the non-conformal potential employed.
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5. Curvature parameter and deconfinement

cot + csc? is a three-parameter potential, the
strength G, the reduced mass u, and the curvature, s

as a driver of the confinement-deconfinement transition

When curvature goes down, High-Lying S° states
approach “flat” scattering states of the 1/r piece for

both the energy and wave functions.

Two limits:
o v — 0,

e K\/k — k, k constant,

k—0 G2 1
EK<H:) o h2 n27
20
K\/k—k G2 1 h2
Ex(k) — — R 3 2Mk2
2u

Possible because of the common SO(4)/S0O(2,1)

symmetries shared by the cot + csc® and 1 /T potentials.

e Barut,Wilson, J.Phys.A:Math.Gen. 20, 6271 (1987)
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As curvature can go down because of a possible
density dependence, confinement fades away, an
observation that is suggestive of a deconfinement
scenario controlled by the curvature parameter of

the cot + csc? potential.

Deconfinement as flattening of space considered by
o F. Takagi, PRD 35, 2226 (1987)

within the context of a AdSs black hole universe

as bag scenario.

Advantage of our scheme:

Density dependent space flattening paralleled by
regression of the “curved” cot+ csc® — to the flat
1/r potential, and correspondingly, by regression of
the cot + csc® wave functions from the confined to

the 1/r wave-functions from the deconfined phases.
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5. Proton electric charge form factor as a 4D

Fourier transform

gl _ ilallr|coso_ ilal Sjl—x cosG,
r| = Rsinxzsi;lgx.
of the ground state charge density:
Jo(r)=e(Xoo(x, k))”,
Xoozibibij;jb) sinye X, b= j’%g;,

using the 4D int. vol., R®sin® y sin 0dRdxdfd:

Gh(lad= [ dlellal*a(z1 - / A / 19sin
0]

" ilgq| —= sin X | cos OX
dy sin” ye 00)(x; )|
0
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green line:

Compean, M.K., EPJA 39, 1(2007),] hep-ph:0805.2404]
corresponding to k = 0.019 fm ™2 fitted to spectra.

middle blue line: fit to the proton mean square

charge radius, v/< r2 > = 0.87 fm , x = 0.009 fm 2

lowest blue line: Bethe-Salpeter calculation by

Ch. Haupt, Ph.D. thesis,
www.itkp.uni—bonn.de/~haupt/talks/Internal/2005. pdf
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7. Conclusions

e Convenient description of QCD confinement as trapping
on R' x S2, the conformally compactified R** infinite
boundary of AdSs x S?,

e Spectra of the light-flavor baryons N and A well
understood in terms of a conformal spectrum, i.e. ood
irrep of SO(2,4).

e The S° potential, cot 4 csc?, provides a phenomenological
modeling for non-perturbatve corrections to AdS/CFT
Wilson loop potential beyond the Coulombic+linear

interactions.

e Model describes pretty well proton electric charge form-
factor and dressing function of the (effective) gluon

propagator predicting it finite in the infrared.
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