Quark mass matrices in the physical basis

Virendra Gupta

Departamento de Física Aplicada
CINVESTAV-IPN, Unidad Mérida

Introduction

The quark mixing matrix V can be viewed in three basis.

1. Physical basis: M_{u}, M_{d} diagonal.
2. M_{u} diagonal
3. M_{d} diagonal
$V \rightarrow 3$ angles, 1 phase.

Basic formulas

The 3×3 hermitian quark mass matrix M_{q} is diagonalized by V_{q} so that $M_{\mathrm{q}}=V_{\mathrm{q}}^{\dagger} \hat{M}_{\mathrm{q}} V_{\mathrm{q}}, \mathrm{q}=\mathrm{u}, \mathrm{d}$.
The eigenvalues are denoted by $\left(\lambda_{u}, \lambda_{\mathrm{c}}, \lambda_{\mathrm{t}}\right)$ and $\left(\lambda_{\mathrm{d}}, \lambda_{\mathrm{s}}, \lambda_{\mathrm{b}}\right)$ for the up and down quark mass matrices.

Each mass matrix can be expressed in terms of its projectors

$$
\begin{equation*}
M_{\mathrm{u}}=\sum_{\alpha=\mathrm{u}, \mathrm{c}, \mathrm{t}} \lambda_{\alpha} N_{\alpha} \quad \text { and } \quad M_{\mathrm{d}}=\sum_{j=\mathrm{d}, \mathrm{~s}, \mathrm{~b}} \lambda_{j} N_{j} . \tag{1}
\end{equation*}
$$

Basic formulas

$$
\begin{gather*}
\left|V_{\alpha j}\right|^{2}=\operatorname{Tr}\left[N_{\alpha} N_{j}\right] \tag{2}\\
N_{\alpha}=\frac{\left(\lambda_{\beta}-M_{\mathrm{u}}\right)\left(\lambda_{\gamma}-M_{\mathrm{u}}\right)}{\left(\lambda_{\beta}-\lambda_{\alpha}\right)\left(\lambda_{\gamma}-\lambda_{\alpha}\right)} \tag{3}\\
N_{j}=\frac{\left(\lambda_{k}-M_{\mathrm{d}}\right)\left(\lambda_{l}-M_{\mathrm{d}}\right)}{\left(\lambda_{k}-\lambda_{j}\right)\left(\lambda_{l}-\lambda_{j}\right)} \tag{4}
\end{gather*}
$$

with (α, β, γ) and (j, k, l) any permutation of $(\mathbf{u}, \mathrm{c}, \mathrm{t})$ and $(\mathrm{d}, \mathrm{s}, \mathrm{b})$.

Basic formulas

The Jarlskog invariant $J(V)$, which is a measure of CP-violation can be directly expressed in terms of M_{u} and M_{d}.

$$
\begin{aligned}
& \operatorname{Det}\left(\left[M_{\mathrm{u}}, M_{\mathrm{d}}\right]\right)=2 i D\left(\lambda_{\alpha}\right) D\left(\lambda_{j}\right) J(V), \\
& D\left(\lambda_{\alpha}\right)=\left(\lambda_{\mathrm{c}}-\lambda_{\mathrm{u}}\right)\left(\lambda_{\mathrm{t}}-\lambda_{\mathrm{u}}\right)\left(\lambda_{\mathrm{t}}-\lambda_{\mathrm{c}}\right) \\
& D\left(\lambda_{j}\right)=\left(\lambda_{\mathrm{s}}-\lambda_{\mathrm{d}}\right)\left(\lambda_{\mathrm{b}}-\lambda_{\mathrm{d}}\right)\left(\lambda_{\mathrm{b}}-\lambda_{\mathrm{s}}\right) .
\end{aligned}
$$

If one mass matrix is diagonal then

$$
J(V)=\operatorname{Im}\left(M_{12} M_{23} M_{13}^{*}\right) / D(\lambda)
$$

Fritzsch type Mass Matrices

$$
M_{\mathrm{u}}=\left(\begin{array}{ccc}
0 & A & 0 \\
A^{*} & 0 & B \\
0 & B^{*} & C
\end{array}\right), \quad M_{\mathrm{d}}=\left(\begin{array}{ccc}
0 & A^{\prime} & 0 \\
A^{* *} & 0 & B \\
0 & B^{\prime *} & C^{\prime}
\end{array}\right)
$$

Without lack of generality we can take C and C^{\prime} to be positive and A and B to be real and positive. Then, M_{u} and M_{d} have eight real parameters $A, B, C, C^{\prime},\left|A^{\prime}\right|,\left|B^{\prime}\right|$ and the phases $\phi_{A^{\prime}}$ and $\phi_{B^{\prime}}$.

Gupta-Rajpoot type mass matrices

For the three families of quarks the Gupta-Rajpoot mass matrices are of the form

$$
M_{\mathrm{u}}=\left(\begin{array}{ccc}
0 & A & 0 \\
A^{*} & |D| & B \\
0 & B^{*} & |C|
\end{array}\right), \quad M_{\mathrm{d}}=\left(\begin{array}{ccc}
0 & A^{\prime} & 0 \\
A^{\prime *} & \left|D^{\prime}\right| & B \\
0 & B^{\prime *} & \left|C^{\prime}\right|
\end{array}\right.
$$

Without lack of generality we can make M_{u} to be real and positive. Then, M_{u} and M_{d} have ten real parameters A, B, $C, D,\left|A^{\prime}\right|,\left|B^{\prime}\right|,\left|C^{\prime}\right|,\left|D^{\prime}\right|$, and the phases $\phi_{A^{\prime}}$ and $\phi_{B^{\prime}}$. To reduce the number of parameters to nine we shall take $\left|D^{\prime}\right|=0$.

CGS type mass matrices

$$
M=\left(\begin{array}{ccc}
0 & a & d \\
a^{*} & 0 & b \\
d^{*} & b^{*} & c
\end{array}\right)
$$

In the physical basis with the CGS-type mass matrix it is enough to consider the case where M_{u} is Fritzsch-type while M_{d} is CGS-type

$$
M_{\mathrm{u}}=\left(\begin{array}{ccc}
0 & a & 0 \\
a & 0 & b \\
0 & b & c
\end{array}\right), \quad M_{\mathrm{d}}=\left(\begin{array}{ccc}
0 & a^{\prime} & i\left|d^{\prime}\right| \\
a^{\prime} & 0 & b^{\prime} \\
-i\left|d^{\prime}\right| & b^{\prime} & c^{\prime}
\end{array}\right)
$$

Fits

1. For a given choice of the mass matrices we form a χ^{2}-function which contains eleven summands.
2. The first five compare the experimental values the four best measured moduli ($\left.\left|V_{\mathrm{ud}}\right|,\left|V_{\mathrm{us}}\right|,\left|V_{\mathrm{cd}}\right|,\left|V_{\mathrm{cs}}\right|\right)$ and $J(V)$ with their theoretical expressions.
3. The last six summands constrain the eigenvalues of quark mass matrices to the experimentally deduced quark masses at a specified energy scale.

Quark masses at various energy scales.

Quark mass	Scale		
	2 GeV	$M_{Z}=91,1876 \mathrm{GeV}$	PDG(06)
m_{u}	$2,2_{-0,7}^{+0,8}$	$1,28_{-0,43}^{+0,50}$	$2,25 \pm 0,75$
m_{d}	$5,0 \pm 2,0$	$2,91_{-1,20}^{+1,24}$	$5,0 \pm 2,0$
m_{s}	95 ± 25	55_{-15}^{+16}	95 ± 25
m_{c}	$1,07 \pm 0,12$	$0,624 \pm 0,083$	$1,25 \pm 0,09$
m_{b}	$5,04_{-0,15}^{+0,16}$	$2,89 \pm 0,09$	$4,20 \pm 0,07$
m_{t}	$318,9_{-12,3}^{+13,1}$	$172,5 \pm 3,0$	$174,2 \pm 3,3$

XII Mexican Workshop on Particles and Fields, 5-8 November 2009, Culiacan and Mazatlan, Sinaloa- p.10/??

Observed values of CKM parameters.

Observable	Exp. value
$\left\|V_{\text {ud }}\right\|$	$0,97383 \pm 0,00024$
$\left\|V_{\text {us }}\right\|$	$0,2272 \pm 0,0010$
$\left\|V_{\text {cd }}\right\|$	$0,2271 \pm 0,0010$
$\left\|V_{\text {cs }}\right\|$	$0,97296 \pm 0,00024$
$J(V)$	$(3,08 \pm 0,18) \times 10^{-5}$

XII Mexican Workshop on Particles and Fields, 5-8 November 2009, Culiacan and Mazatlan, Sinaloa- p.11/??

Fit for quark masses at M_{Z} energy scale.

Type of mass matrix	Basis	Number of parameters	$\chi^{2} /(\mathrm{dof})$
Fritzsch	Physical $\left(\phi_{A^{\prime}}\right.$ and $\phi_{B^{\prime}}$ free $)$	8	$4.23 / 3=1.41$
	Physical $\left(\phi_{A^{\prime}}=-\pi / 2\right.$ and $\left.\phi_{B^{\prime}}=0\right)$	6	$4.84 / 5=0.97$
Gupta-Rajpoot	Physical $\left(\phi_{A^{\prime}}\right.$ and $\phi_{B^{\prime}}$ free $)$	9	$0.80 / 2=0.40$
	Physical $\left(\phi_{A^{\prime}}=-\pi / 2\right.$ and $\left.\phi_{B^{\prime}}=0\right)$	7	$2.62 / 4=0.66$
M_{u} Fritzsch-type and M_{d} CGS-type	Physical	7	$1.89 / 4=0.47$

Fit for quark at 2 GeV energy scale.

Type of mass matrix	Basis	Number of parameters	$\chi^{2} /($ dof $)$
Fritzsch	Physical $\left(\phi_{A^{\prime}}\right.$ and $\phi_{B^{\prime}}$ free $)$	8	$4.80 / 3=1.60$
	Physical $\left(\phi_{A^{\prime}}=-\pi / 2\right.$ and $\left.\phi_{B^{\prime}}=0\right)$	6	$5.49 / 5=1.10$
Gupta-Rajpoot	Physical $\left(\phi_{A^{\prime}}\right.$ and $\phi_{B^{\prime}}$ free $)$	9	$0.87 / 2=0.44$
	Physical $\left(\phi_{A^{\prime}}=-\pi / 2\right.$ and $\left.\phi_{B^{\prime}}=0\right)$	7	$2.76 / 4=0.69$
M_{u} Fritzsch-type and M_{d} CGS-type	Physical	7	$2.47 / 4=0.62$

Fit of PDG quark masses.

Type of mass matrix	Basis	Number of parameters	$\chi^{2} /($ dof $)$
Fritzsch	Physical $\left(\phi_{A^{\prime}}\right.$ and $\phi_{B^{\prime}}$ free $)$	8	$3.32 / 3=1.11$
	Physical $\left(\phi_{A^{\prime}}=-\pi / 2\right.$ and $\left.\phi_{B^{\prime}}=0\right)$	6	$4.27 / 5=0.85$
Gupta-Rajpoot	Physical $\left(\phi_{A^{\prime}}\right.$ and $\phi_{B^{\prime}}$ free $)$	9	$0.78 / 2=0.39$
	Physical $\left(\phi_{A^{\prime}}=-\pi / 2\right.$ and $\left.\phi_{B^{\prime}}=0\right)$	7	$3.77 / 4=0.94$
M_{u} Fritzsch-type and M_{d} CGS-type	Physical	7	$0.80 / 4=0.20$

Conclusion

1. The stability of this type of analysis with respect to evolution of the quark masses is important. As can be seen the results for $\chi^{2} /$ dof for the different cases at 2 GeV scale are very similar to results at M_{Z} scale.
2. The CGS type of mass matrix with 7 parameters is favored over the F type or the choice of the G-R type.
