Quark mass matrices in the physical basis

Virendra Gupta

Departamento de Física Aplicada CINVESTAV-IPN, Unidad Mérida

XII Mexican Workshop on Particles and Fields, 5-8 November 2009, Culiacan and Mazatlan, Sinaloa-p.1/??

Introduction

The quark mixing matrix V can be viewed in three basis.

- 1. Physical basis: M_u , M_d diagonal.
- 2. M_u diagonal
- 3. M_d diagonal
- $V \rightarrow$ 3 angles, 1 phase.

Basic formulas

The 3×3 hermitian quark mass matrix M_q is diagonalized by V_q so that $M_q = V_q^{\dagger} \hat{M}_q V_q$, q=u,d. The eigenvalues are denoted by $(\lambda_u, \lambda_c, \lambda_t)$ and $(\lambda_d, \lambda_s, \lambda_b)$ for the up and down quark mass matrices.

Each mass matrix can be expressed in terms of its projectors

$$M_{\rm u} = \sum_{\alpha = {\rm u,c,t}} \lambda_{\alpha} N_{\alpha}$$
 and $M_{\rm d} = \sum_{j={\rm d,s,b}} \lambda_j N_j$. (1)

XII Mexican Workshop on Particles and Fields, 5-8 November 2009, Culiacan and Mazatlan, Sinaloa-p.3/??

Basic formulas

$$|V_{\alpha j}|^2 = \text{Tr}[N_{\alpha}N_j], \qquad (2)$$

$$N_{\alpha} = \frac{(\lambda_{\beta} - M_{\rm u})(\lambda_{\gamma} - M_{\rm u})}{(\lambda_{\beta} - \lambda_{\alpha})(\lambda_{\gamma} - \lambda_{\alpha})}$$
(3)

$$N_j = \frac{(\lambda_k - M_d)(\lambda_l - M_d)}{(\lambda_k - \lambda_j)(\lambda_l - \lambda_j)},$$
(4)

with (α,β,γ) and (j,k,l) any permutation of (u,c,t) and (d,s,b).

XII Mexican Workshop on Particles and Fields, 5-8 November 2009, Culiacan and Mazatlan, Sinaloa-p.4/??

Basic formulas

The Jarlskog invariant J(V), which is a measure of CP-violation can be directly expressed in terms of $M_{\rm u}$ and $M_{\rm d}$.

$$\operatorname{Det}([M_{\mathrm{u}}, M_{\mathrm{d}}]) = 2i D(\lambda_{\alpha}) D(\lambda_{j}) J(V),$$

$$D(\lambda_{\alpha}) = (\lambda_{c} - \lambda_{u})(\lambda_{t} - \lambda_{u})(\lambda_{t} - \lambda_{c})$$

$$D(\lambda_j) = (\lambda_{\rm s} - \lambda_{\rm d})(\lambda_{\rm b} - \lambda_{\rm d})(\lambda_{\rm b} - \lambda_{\rm s}).$$

If one mass matrix is diagonal then

$$J(V) = Im \left(M_{12}M_{23}M_{13}^* \right) / D(\lambda)$$

XII Mexican Workshop on Particles and Fields, 5-8 November 2009, Culiacan and Mazatlan, Sinaloa-p.5/??

Fritzsch type Mass Matrices

$$M_{\rm u} = \begin{pmatrix} 0 & A & 0 \\ A^* & 0 & B \\ 0 & B^* & C \end{pmatrix}, \quad M_{\rm d} = \begin{pmatrix} 0 & A' & 0 \\ A'^* & 0 & B \\ 0 & B'^* & C' \end{pmatrix}$$

Without lack of generality we can take *C* and *C'* to be positive and *A* and *B* to be real and positive. Then, M_u and M_d have eight real parameters *A*, *B*, *C*, *C'*, |A'|, |B'| and the phases $\phi_{A'}$ and $\phi_{B'}$.

Gupta-Rajpoot type mass matrices

For the three families of quarks the Gupta-Rajpoot mass matrices are of the form

$$M_{\rm u} = \begin{pmatrix} 0 & A & 0 \\ A^* & |D| & B \\ 0 & B^* & |C| \end{pmatrix}, \quad M_{\rm d} = \begin{pmatrix} 0 & A' & 0 \\ A'^* & |D'| & B \\ 0 & B'^* & |C'| \end{pmatrix}$$

Without lack of generality we can make M_u to be real and positive. Then, M_u and M_d have ten real parameters A, B, C, D, |A'|, |B'|, |C'|, |D'|, and the phases $\phi_{A'}$ and $\phi_{B'}$. To reduce the number of parameters to nine we shall take |D'| = 0.

XII Mexican Workshop on Particles and Fields, 5-8 November 2009, Culiacan and Mazatlan, Sinaloa-p.7/??

CGS type mass matrices

$$M = \begin{pmatrix} 0 & a & d \\ a^* & 0 & b \\ d^* & b^* & c \end{pmatrix}$$

In the physical basis with the CGS-type mass matrix it is enough to consider the case where $M_{\rm u}$ is Fritzsch-type while $M_{\rm d}$ is CGS-type

$$M_{\rm u} = \begin{pmatrix} 0 & a & 0 \\ a & 0 & b \\ 0 & b & c \end{pmatrix}, \quad M_{\rm d} = \begin{pmatrix} 0 & a' & i|d'| \\ a' & 0 & b' \\ -i|d'| & b' & c' \end{pmatrix}$$

XII Mexican Workshop on Particles and Fields, 5-8 November 2009, Culiacan and Mazatlan, Sinaloa-p.8/??

Fits

- 1. For a given choice of the mass matrices we form a χ^2 -function which contains eleven summands.
- 2. The first five compare the experimental values the four best measured moduli ($|V_{ud}|$, $|V_{us}|$, $|V_{cd}|$, $|V_{cs}|$) and J(V) with their theoretical expressions.
- 3. The last six summands constrain the eigenvalues of quark mass matrices to the experimentally deduced quark masses at a specified energy scale.

Quark masses at various energy scales.

Quark mass	Scale		
	2 GeV	$M_Z=91,\!1876{\rm GeV}$	PDG(06)
$m_{ m u}$	$2,2^{+0,8}_{-0,7}$	$1,28_{-0,43}^{+0,50}$	$2,25 \pm 0,75$
$m_{ m d}$	$5,0\pm2,0$	$2,91^{+1,24}_{-1,20}$	$5,0\pm2,0$
$m_{ m s}$	95 ± 25	55^{+16}_{-15}	95 ± 25
$m_{ m c}$	$1,\!07\pm0,\!12$	$0,\!624 \pm 0,\!083$	$1,25 \pm 0,09$
$m_{ m b}$	$5,04_{-0,15}^{+0,16}$	$2,\!89\pm0,\!09$	$4,20 \pm 0,07$
$m_{ m t}$	$318,9^{+13,1}_{-12,3}$	$172,5\pm3,0$	$174,2 \pm 3,3$

XII Mexican Workshop on Particles and Fields, 5-8 November 2009, Culiacan and Mazatlan, Sinaloa-p.10/??

Observed values of CKM parameters.

Observable	Exp. value
$ V_{ m ud} $	$0,\!97383 \pm 0,\!00024$
$ V_{ m us} $	$0,\!2272\pm0,\!0010$
$ V_{ m cd} $	$0,\!2271\pm0,\!0010$
$ V_{ m cs} $	$0,\!97296 \pm 0,\!00024$
J(V)	$(3,08\pm0,18)\times10^{-5}$

XII Mexican Workshop on Particles and Fields, 5-8 November 2009, Culiacan and Mazatlan, Sinaloa-p.11/??

Fit for quark masses at M_Z energy scale.

Type of	Basis	Number of	$\chi^2/({ m dof})$
mass matrix		parameters	
Fritzsch	Physical ($\phi_{A'}$ and $\phi_{B'}$ free)	8	4.23/3 = 1.4
	Physical ($\phi_{A'}=-\pi/2$ and $\phi_{B'}=0$)	6	4.84/5= 0.97
Gupta-Rajpoot	Physical ($\phi_{A'}$ and $\phi_{B'}$ free)	9	0.80/2 = 0.4
	Physical ($\phi_{A'}=-\pi/2$ and $\phi_{B'}=0$)	7	2.62/4= 0.66
M_{u} Fritzsch-type	Physical	7	1.89/4 = 0.47
and $M_{ m d}$ CGS-type			

Fit for quark at 2 GeV energy scale.

Type of	Basis	Number of	$\chi^2/(dof)$
mass matrix		parameters	
Fritzsch	Physical ($\phi_{A'}$ and $\phi_{B'}$ free)	8	4.80/3 = 1.60
	Physical ($\phi_{A'}=-\pi/2$ and $\phi_{B'}=0$)	6	5.49/5= 1.10
Gupta-Rajpoot	Physical ($\phi_{A'}$ and $\phi_{B'}$ free)	9	0.87/2 = 0.44
	Physical ($\phi_{A'}=-\pi/2$ and $\phi_{B'}=0$)	7	2.76/4= 0.69
$M_{\rm u}$ Fritzsch-type	Physical	7	2.47/4 = 0.62
and $M_{ m d}$ CGS-type			

XII Mexican Workshop on Particles and Fields, 5-8 November 2009, Culiacan and Mazatlan, Sinaloa-p.13/??

Fit of PDG quark masses.

Type of	Basis	Number of	$\chi^2/(dof)$
mass matrix		parameters	
Fritzsch	Physical ($\phi_{A'}$ and $\phi_{B'}$ free)	8	3.32/3 = 1.1
	Physical ($\phi_{A'}=-\pi/2$ and $\phi_{B'}=0$)	6	4.27/5= 0.8
Gupta-Rajpoot	Physical ($\phi_{A'}$ and $\phi_{B'}$ free)	9	0.78/2 = 0.3
	Physical ($\phi_{A'}=-\pi/2$ and $\phi_{B'}=0$)	7	3.77/4= 0.94
M_{u} Fritzsch-type	Physical	7	0.80/4 = 0.20
and $M_{ m d}$ CGS-type			

Conclusion

- 1. The stability of this type of analysis with respect to evolution of the quark masses is important. As can be seen the results for χ^2/dof for the different cases at 2 GeV scale are very similar to results at M_Z scale.
- 2. The CGS type of mass matrix with 7 parameters is favored over the F type or the choice of the G-R type.