

The strange asymmetry of the proton sea

J. Magnin CBPF - Brazilian Center for Research in Physics

XII Mexican Workshop on Particles and Fields - Mazatlán, Mexico

Outline

- Introduction
- The structure of the proton
- The strange sea of the proton
- Conclusions

Introduction

• First speculations about an asymmetric strange sea of the nucleon dates from 1987 (PLB **191** (1987) 205).

• Since then on, several models of the nucleon structure allowing for an asymmetric strange sea have been proposed.

• There is no compelling experimental evidence of $s - \overline{s}$ asymmetries.

• There is some indication of such asymmetry coming from a global fit of Deep Inelastic Scattering data (EPJC 12 (2000) 243).

Notice that

$$\int_0^1 dx \left[s(x) - \bar{s}(x) \right] = 0 \qquad \qquad s(x) \neq \bar{s}(x)$$

• A small s - \overline{s} asymmetry arises as a perturbative effect at NNLO (PRL 93 (2004) 152003)

$$S = \int_0^1 x [s(x) - \bar{s}(x)] dx \simeq -5 \times 10^{-4}$$

•There exist firm experimental evidence of \overline{u} - d asymmetries (Gotfried sum rule violation - New Muon Collaboration: PRL 66 (1991) 2712; E866: PRL 80 (1998) 3715).

$$\int_0^1 dx [\bar{d} - \bar{u}] = 0.100 \pm 0.018,$$

•A s - \overline{s} asymmetry in the nucleon sea is conceivable

The structure of the proton

Assume that at some low Q₀² scale the proton is made of valence quarks, v_u(x) and v_d(x)
Valence quarks interact by the exchange of gluons (needed, they have to form a bound state)
You can describe the emission of gluons from valence quarks using

$$P_{gq}(z) = \frac{4}{3} \frac{1 + (1 - z)^2}{z}$$
 Probability of gluon emission with momentum fraction z from a parent quark

• Assume now that the gluon, before interacting with another valence quark, produces a $q-\overline{q}$ pair. This gluon splitting can be described by

-1

$$P_{qg}(z) = \frac{1}{2} \left(z^2 + (1-z)^2 \right)$$
Probability of $q - \overline{q}$ creation with momentum fraction z from a parent gluon

• Then the joint probability density of having a q or a \overline{q} coming from the subsequent decays $v \rightarrow v + g \rightarrow v + q + \overline{q}$, is

$$q(x,Q^2) = \bar{q}(x,Q^2) = N \frac{\alpha_{st}^2(Q^2)}{(2\pi)^2} \int_x^1 \frac{dy}{y} P_{qg}\left(\frac{x}{y}\right) \int_y^1 \frac{dz}{z} P_{gq}\left(\frac{y}{z}\right) v(z)$$

- The next step is to let the $q \overline{q}$ pair to interact with the valence quarks.
- Using the ideas of recombination models we get

$$P_M(x) = \int_0^x \frac{dy}{y} \int_0^{x-y} \frac{dz}{z} F(y,z) R(x,y,z),$$
$$F(y,z) = \beta y v(y) z \bar{q}(z) \rho(y,z)$$

$$R(y,z) = \alpha \frac{yz}{x^2} \delta\left(1 - \frac{y+z}{x}\right)$$

• And similar for the Baryon inside the proton

with the constraints

$$\int_{0}^{1} dx \left[P_{B}(x) - P_{M}(x) \right] = 0,$$
Flavor sum rule
$$\int_{0}^{1} dx \left[x P_{B}(x) + x P_{M}(x) \right] = 1,$$
Momentum sum rule

The proton wave function at Q_0^2 can be thought as

$$|p\rangle = a_0 |p_0\rangle + a_1 |pg\rangle + \sum_{i=2}^n a_i |M_i B_i\rangle$$

The strange sea of the proton

- The strange sea of the proton at the $Q_0{}^2$ scale comes from the $|\text{KH}\rangle$ Fock state.
- The strange sea quark and anti-quark pdfs are

Hyperon probability density

$$s^{NP}(x) = \int_{x}^{1} \frac{dy}{y} P_{H}(y) s_{H}(x/y)$$
 s-quark inside the H
 $\bar{s}^{NP}(x) = \int_{x}^{1} \frac{dy}{y} P_{K}(y) \bar{s}_{K}(x/y)$ s-quark inside the K
Kaon probability density

For the valence strange quarks inside the Kaon and the Hyperon we use the simple forms

$$\bar{s}_{K}(x) = \frac{1}{\beta(a_{K}+1, b_{K}+1)} x^{a_{K}} (1-x)^{b_{K}}$$
$$s_{H}(x) = \frac{1}{\beta(a_{H}+1, b_{H}+1)} x^{a_{H}} (1-x)^{b_{H}}$$

Normalization constants to ensure one strange valence quark inside the Kaon and the Hyperon Instead of using the full form of the recombination model, we parameterize the $\rm P_{H}$ and $\rm P_{K}$ inside-hadron probability densities as

$$P_{\mathbf{K}}(x) = \frac{1}{\beta(a_{\mathrm{KN}} + 1, b_{\mathrm{KN}+1})} x^{a_{\mathrm{KN}}} (1-x)^{b_{\mathrm{KN}}}$$

$$P_{\rm H}(x) = \frac{1}{\beta(a_{\rm HN} + 1, b_{\rm HN} + 1)} x^{a_{\rm HN}} (1-x)^{b_{\rm HN}}$$

Normalized to one Kaon and one Hyperon in the |KH> Fock state

- The use of the above expressions for $P_{\rm K}$ and $P_{\rm H}$ does not imply to loose generality.

Remembering that

$$P_M(x) = \int_0^x \frac{dy}{y} \int_0^{x-y} \frac{dz}{z} F(y,z) R(x,y,z)$$

with

$$F(y,z) = \beta y v(y) z \bar{q}(z) \rho(y,z)$$

is possible to choose $\rho(y,z)$ such that

$$P_{\mathsf{M}}(x) = \mathsf{N} x^a (1-x)^b$$

The momentum sum rule

$$\int_{0}^{1} dx \left[x P_B(x) + x P_M(x) \right] = 1$$

requires that

$$\begin{aligned} &\frac{\Gamma(a_{\rm KN} + b_{\rm KN} + 2)\Gamma(a_{\rm KN} + 2)}{\Gamma(a_{\rm KN} + 1)\Gamma(a_{\rm KN} + b_{\rm KN} + 3)} + \\ &\frac{\Gamma(a_{\rm HN} + b_{\rm HN} + 2)\Gamma(a_{\rm HN} + 2)}{\Gamma(a_{\rm HN} + 1)\Gamma(a_{\rm HN} + b_{\rm HN} + 3)} = 1 \end{aligned}$$

fixing one parameter in the meson probability density

Then our fitting function

$$xs(x) - x\bar{s}(x) = N^2 \left[xs^{NP}(x) - x\bar{s}^{NP}(x) \right]$$

has 8 free parameters:

- global normalization N.
- 4 parameters from the $s_{\rm K}$ and $s_{\rm H}$ valence probability densities.
- 3 parameters from the Kaon and Hyperon probability densities.

Results of the fit

Parameter	Value
a_{KN}	$2.06 \pm 2.62 \times 10^{-7}$
b_{KN}	2.14 ± 0.11
a_K	5.14 ± 1.93
b_K	0.90 ± 0.34
a_{HN}	1.17 ± 0.35
a_H	9.47 ± 0.61
b_H	2.51 ± 0.61
N^2	0.04 ± 0.02

b_{HN} = 1.1 is fixed by the momentum sum rule

Conclusions

• The model provides a prescription for the sea quark and gluon pdfs at the scale Q_0^2 , where pQCD evolution starts.

•The model describes quite well the results on the $xs - x\overline{s}$ asymmetry from the global fit to DIS data.

• Independent measurement of xs and $x\overline{s}$ by the same experiment are needed to over-constraint the parameters of the model.

This work is being done in collaboration with C. Ávila and J.C. Sanabria, from Los Andes University, Bogotá, Colombia