Contents Introduction Asymmetry FSR models Results Conclusion	
--	--

Pion charge asymmetries in $e^+e^- \rightarrow \pi^+ \pi^- \gamma$ below 1 GeV

Luis Armando Gallegos Infante

Centro Universitario de los Lagos, Universidad de Guadalajara, México

XII Mexican workshop on particles and fields 2009

・ロト ・回ト ・ヨト ・ヨト 三星

- Introduction
- The process
- 2 Asymmetry
- 3 FSR models
 - Bremsstrahlung and double resonance
 - ϕ decayment

- Numeric calculation
- KL
- LSM
- UχPT

Conclusion

・ロト ・回ト ・ヨト ・ヨト

E DQC

	Contents Introduction Asymmetry FSR models Results Conclusion	Introduction The process		
Introduction				

• The ϕ radiative decays provide information about light scalar mesons

- The ϕ radiative decays provide information about light scalar mesons
- We can find experimental data from KLOE [PLB537 21 (2002),PLB36 209 (2002)]

◆□> ◆□> ◆目> ◆目> ◆日 ● の Q @ >

- The ϕ radiative decays provide information about light scalar mesons
- We can find experimental data from KLOE [PLB537 21 (2002),PLB36 209 (2002)]
- Charge asymmetry can be a good test for different final state radiation (FSR) models [PLB459 279 (1999)]

Contents Introduction Asymmetry FSR models Results Conclusion Introduction The process Results Conclusion

- The ϕ radiative decays provide information about light scalar mesons
- We can find experimental data from KLOE [PLB537 21 (2002),PLB36 209 (2002)]
- Charge asymmetry can be a good test for different final state radiation (FSR) models [PLB459 279 (1999)]
- KLOE Collaboration published experimental data about the asymmetry [PLB634 148 (2006)]

◆□ → ◆□ → ◆三 → ◆三 → ○ へ ○ →

We are interested in the process

三 のへで

We are interested in the process

$$e^{-}\left(p_{1}\right)e^{+}\left(p_{2}\right) \rightarrow \pi^{+}\left(p_{+}\right)\pi^{-}\left(p_{-}\right)\gamma\left(k,\epsilon\right).$$

三 のへで

Contents Introduction Asymmetry Introduction FSR models The process Results Conclusion

The process

We are interested in the process

$$e^{-}(p_1) e^{+}(p_2) \rightarrow \pi^{+}(p_+) \pi^{-}(p_-) \gamma(k, \epsilon).$$

The invariant amplitude M is constructed with two terms depending if foton emission comes from FSR or ISR: $M = M_{ISR} + M_{FSR}$

Contents Introduction Asymmetry Introduction FSR models The process Results Conclusion

The process

We are interested in the process

$$e^{-}\left(p_{1}
ight)e^{+}\left(p_{2}
ight)
ightarrow\pi^{+}\left(p_{+}
ight)\pi^{-}\left(p_{-}
ight)\gamma\left(k,\epsilon
ight).$$

The invariant amplitude M is constructed with two terms depending if foton emission comes from FSR or ISR: $M = M_{ISR} + M_{FSR}$

$$M_{ISR} = -\frac{e}{q^2} L^{\mu\nu} \epsilon_{\nu}^* I_{\mu} F_{\pi} \left(q^2\right)$$

The process

We are interested in the process

$$e^{-}(p_1) e^{+}(p_2) \rightarrow \pi^{+}(p_+) \pi^{-}(p_-) \gamma(k, \epsilon).$$

The invariant amplitude M is constructed with two terms depending if foton emission comes from FSR or ISR: $M = M_{ISR} + M_{FSR}$

$$M_{ISR} = -\frac{e}{q^2} L^{\mu\nu} \epsilon_{\nu}^* I_{\mu} F_{\pi} \left(q^2\right)$$

$$M_{FSR} = \frac{e^2}{s} J_{\mu} M_F^{\mu\nu} \epsilon_{\nu}^*$$

Contents Introduction Asymmetry FSR models Results Conclusion	Introduction The process
--	-----------------------------

$$L^{\mu\nu} = e^{2}\overline{u}_{s_{2}}(-p_{2}) \times \left[\gamma^{\nu} \frac{(-\not p_{2} + \not k + m_{e})}{t_{2}} \gamma^{\mu} + \gamma^{\mu} \frac{(\not p_{1} - \not k + m_{e})}{t_{1}} \gamma^{\nu}\right] \times u_{s_{1}}(p_{1} - \not k + m_{e})$$

$$L^{\mu\nu} = e^{2}\overline{u}_{s_{2}}(-p_{2}) \times \left[\gamma^{\nu} \frac{(-\not p_{2} + \not k + m_{e})}{t_{2}} \gamma^{\mu} + \gamma^{\mu} \frac{(\not p_{1} - \not k + m_{e})}{t_{1}} \gamma^{\nu}\right] \times u_{s_{1}}(p_{1} - \not k + m_{e})$$

$$J_{\mu} = e\overline{u}_{s_2}(-p_2)\gamma_{\mu}u_{s_1}(p_1)$$

$$L^{\mu\nu} = e^{2}\overline{u}_{s_{2}}(-p_{2}) \times \left[\gamma^{\nu} \frac{(-\not p_{2} + \not k + m_{e})}{t_{2}} \gamma^{\mu} + \gamma^{\mu} \frac{(\not p_{1} - \not k + m_{e})}{t_{1}} \gamma^{\nu}\right] \times u_{s_{1}}(p_{1} - \not k + m_{e})$$

$$J_{\mu}=e\overline{u}_{s_{2}}\left(-p_{2}\right)\gamma_{\mu}u_{s_{1}}\left(p_{1}\right)$$

with the kinematics variables $Q = p_1 + p_2, q = p_+ + p_-, l = p_+ - p_-$ and the Lorentz scalars

Contents Introduction Asymmetry FSR models Results Conclusion	Introduction The process
--	-----------------------------

$$s \equiv Q^2 = 2p_1 \cdot p_2,$$

$$t_1 \equiv (p_1 - k)^2 = -2p_1 \cdot k,$$

$$t_2 \equiv (p_2 - k)^2 = -2p_2 \cdot k,$$

$$u_1 \equiv l \cdot p_1, u_2 \equiv l \cdot p_2,$$

where the electron mass was neglected.

・ロン ・回 と ・ヨン ・ヨン

三 のへで

Contents Introduction Asymmetry FSR models Results Conclusion	Introduction The process
--	-----------------------------

$$s \equiv Q^2 = 2p_1 \cdot p_2,$$

$$t_1 \equiv (p_1 - k)^2 = -2p_1 \cdot k,$$

$$t_2 \equiv (p_2 - k)^2 = -2p_2 \cdot k,$$

$$u_1 \equiv l \cdot p_1, u_2 \equiv l \cdot p_2,$$

where the electron mass was neglected. The most general tensor $M_F^{\mu\nu}$ is [EPJC 40, 41 (2005)]

(4回) (日) (日) (日) (日)

Contents Introduction Asymmetry FSR models Results Conclusion	Introduction The process
--	-----------------------------

$$s \equiv Q^2 = 2p_1 \cdot p_2,$$

$$t_1 \equiv (p_1 - k)^2 = -2p_1 \cdot k,$$

$$t_2 \equiv (p_2 - k)^2 = -2p_2 \cdot k,$$

$$u_1 \equiv l \cdot p_1, u_2 \equiv l \cdot p_2,$$

where the electron mass was neglected. The most general tensor $M_F^{\mu\nu}$ is [EPJC 40, 41 (2005)]

$$M_F^{\mu\nu} = f_1 \tau_1^{\mu\nu} + f_2 \tau_2^{\mu\nu} + f_3 \tau_3^{\mu\nu}$$

(4回) (日) (日) (日) (日)

Contents Introduction Asymmetry FSR models Results Conclusion	Introduction The process
--	-----------------------------

$$s \equiv Q^2 = 2p_1 \cdot p_2,$$

$$t_1 \equiv (p_1 - k)^2 = -2p_1 \cdot k,$$

$$t_2 \equiv (p_2 - k)^2 = -2p_2 \cdot k,$$

$$u_1 \equiv l \cdot p_1, u_2 \equiv l \cdot p_2,$$

where the electron mass was neglected. The most general tensor $M_F^{\mu\nu}$ is [EPJC 40, 41 (2005)]

$$M_F^{\mu\nu} = f_1 \tau_1^{\mu\nu} + f_2 \tau_2^{\mu\nu} + f_3 \tau_3^{\mu\nu}$$

$$\begin{split} \tau_{1}^{\mu\nu} &= k^{\mu}Q^{\nu} - g^{\mu\nu}k \cdot Q, \\ \tau_{2}^{\mu\nu} &= k \cdot l \left(l^{\mu}Q^{\nu} - g^{\mu\nu}k \cdot l \right) + l^{\nu} \left(k^{\mu}k \cdot l - l^{\mu}k \cdot Q \right), \\ \tau_{3}^{\mu\nu} &= Q^{2} \left(g^{\mu\nu}k \cdot l - k^{\mu}l^{\nu} \right) + Q^{\mu} \left(l^{\nu}k \cdot Q - Q^{\nu}k \cdot l \right). \end{split}$$

Contents Introduction Asymmetry FSR models Results Conclusion	Introduction The process
--	-----------------------------

The scalar structure functions $f_i \equiv f_i (Q^2, k \cdot Q, k \cdot I)$ are even $(f_{1,2})$ or odd (f_3) under sign change of the argument $k \cdot I$. These functions depend of FSR model.

(日) (同) (E) (E) (E)

Contents Introduction Asymmetry FSR models Results Conclusion	
Asymmetry	

The pions produced in this process differs under charge conjugation, it depends if the foton comes from FSR (odd) or ISR (even), then the interference term has odd charge conjugation and therefore we have charge asymmetry. This asymmetry is defined as:

(日) (同) (E) (E) (E)

	Contents Introduction Asymmetry FSR models Results Conclusion	
Asymmetry		

The pions produced in this process differs under charge conjugation, it depends if the foton comes from FSR (odd) or ISR (even), then the interference term has odd charge conjugation and therefore we have charge asymmetry. This asymmetry is defined as:

$$A = rac{N(heta_{\pi^+} > 90^\circ) - N(heta_{\pi^+} < 90^\circ)}{N(heta_{\pi^+} > 90^\circ) + N(heta_{\pi^+} < 90^\circ)}$$

(日) (同) (E) (E) (E)

	Contents Introduction Asymmetry FSR models Results Conclusion	
Asymmetry		

The pions produced in this process differs under charge conjugation, it depends if the foton comes from FSR (odd) or ISR (even), then the interference term has odd charge conjugation and therefore we have charge asymmetry. This asymmetry is defined as:

$$A = rac{N(heta_{\pi^+} > 90^\circ) - N(heta_{\pi^+} < 90^\circ)}{N(heta_{\pi^+} > 90^\circ) + N(heta_{\pi^+} < 90^\circ)}$$

where θ_{π^+} is the positive pion polar angle.

(日) (同) (目) (日) (日) (日)

Bremsstrahlung and double resonance ϕ decayment

Bremsstrahlung

Figure: Feynman diagrams for Bremsstrahlung

Bremsstrahlung and double resonance ϕ decayment

Bremsstrahlung

For the Bremsstrahlung the structure functions have been calculated under models sQED * VMD and $R\chi PT$ [EPJC 40,41 (2005)]

・ロン ・回 と ・ヨン ・ヨン

Bremsstrahlung

For the Bremsstrahlung the structure functions have been calculated under models sQED * VMD and $R\chi PT$ [EPJC 40,41 (2005)]

$$f_{i} = f_{i}^{sQED} + \Delta f_{i}^{RPT}$$

$$f_{1}^{sQED} = \frac{2k \cdot qF_{\pi} (Q^{2})}{(k \cdot Q)^{2} - (k \cdot I)^{2}}$$

$$f_{2}^{sQED} = \frac{-2F_{\pi} (Q^{2})}{(k \cdot Q)^{2} - (k \cdot I)^{2}}$$

$$f_{3}^{sQED} = 0$$

・ロン ・回 と ・ヨン ・ヨン

Bremsstrahlung and double resonance ϕ decayment

$$\begin{split} \Delta f_1^{RPT} &= \frac{F_V^2 - 2F_V G_V}{f_\pi^2} \left(\frac{1}{m_\rho^2} + \frac{1}{m_\rho^2 - s - im_\rho \Gamma_\rho \left(s \right)} \right) \\ &- \frac{F_A^2}{f_\pi^2 m_a^2} \left(2 + \frac{\left(k \cdot l\right)^2}{D\left(l\right) D\left(-l\right)} + \frac{\left(s + k \cdot Q\right) \left[4m_a^2 - \left(s + l^2 + 2k \cdot Q\right)}{8D\left(l\right) D\left(-l\right)} \right] \right) \\ \Delta f_2^{RPT} &= -\frac{F_A^2}{f_\pi^2 m_a^2} \frac{\left[4m_a^2 - \left(s + l^2 + 2k \cdot Q\right)\right]}{8D\left(l\right) D\left(-l\right)} \\ \Delta f_3^{RPT} &= \frac{F_A^2}{f_\pi^2 m_a^2} \frac{k \cdot l}{D\left(l\right) D\left(-l\right)} \\ D\left(l\right) &= m_a^2 - \frac{s + l^2 + 2k \cdot q + 4k \cdot l}{4} \end{split}$$

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

三 のへで

 Contents

 Introduction

 Asymmetry

 Bremsstrahlung and double resonance

 FSR models

 Results

 Conclusion

The pion form factor

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

三 のへで

Contents Introduction Asymmetry Bren FSR models φ de Results Conclusion	emsstrahlung and double resonance decayment
--	--

The pion form factor

$$F_{\pi}(q^{2}) = 1 + \frac{F_{V}G_{V}}{f_{\pi}^{2}}B_{\rho}(q^{2})\left(1 - \frac{\Pi_{\rho\omega}}{3q^{2}}B_{\omega}(q^{2})\right)$$
$$B_{r}(q^{2}) = \frac{q^{2}}{m_{r}^{2} - q^{2} - im_{r}\Gamma_{r}(q^{2})}$$
$$\Gamma_{r}(q^{2}) = \Gamma_{\rho}\sqrt{\frac{m_{r}^{2}}{q^{2}}}\left(\frac{q^{2} - 4m_{\pi}^{2}}{m_{\rho}^{2} - 4m_{\pi}^{2}}\right)^{3/2}}\Theta(q^{2} - 4m_{\pi}^{2})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Bremsstrahlung and double resonance ϕ decayment

Double resonance

Figure: Feynman diagrams for double resonance

◆□> ◆□> ◆目> ◆目> ◆日 ● ● ●

Bremsstrahlung and double resonance ϕ decayment

Double resonance

The double resonance contribution corresponds to the decay of ϕ to ρ and π and this ρ in pion and foton, this contribution has been calculated in [JHEP 0605:049 (2006)]

・ロト ・回ト ・ヨト ・ヨト

Double resonance

The double resonance contribution corresponds to the decay of ϕ to ρ and π and this ρ in pion and foton, this contribution has been calculated in [JHEP 0605:049 (2006)]

$$\begin{split} f_1^{JHEP} &= -\frac{1}{4\pi\alpha} \left(\left[-1 + \frac{3}{2}x + \sigma \right] \left[g\left(x_1 \right) + g\left(x_2 \right) \right] \right. \\ &+ \frac{1}{4} \left(x_1 - x_2 \right) \left[g\left(x_1 \right) + g\left(x_2 \right) \right] \right) \\ f_2^{JHEP} &= -\frac{1}{4\pi\alpha s^2} \left(g\left(x_1 \right) + g\left(x_2 \right) \right) \\ f_3^{JHEP} &= -\frac{1}{8\pi\alpha s^2} \left(g\left(x_1 \right) - g\left(x_2 \right) \right) \end{split}$$

・ロト ・回ト ・ヨト ・ヨト

Contents Introduction Asymmetry FSR models Results Conclusion	Bremsstrahlung and double resonance ϕ decayment
--	--

where

$$egin{aligned} g\left(x
ight) &= rac{eg^{\phi}_{
ho\pi}g^{
ho}_{\pi\gamma}}{4F_{\phi}}rac{m_{\phi}^{2}e^{ieta_{
ho}}e^{ieta_{\omega\phi}}}{s-m_{\phi}^{2}+im_{\phi}\Gamma_{\phi}}rac{s^{2}\Pi^{VMD}_{
ho}}{(1-x)\,s-m_{
ho}^{2}+im_{
ho}\Gamma_{
ho}\left((1-x)\,s
ight)} \ x_{1,2} &= rac{2p_{+,-}\cdot\left(p_{1}+p_{2}
ight)}{s}, x=2-x_{1}-x_{2}. \end{aligned}$$

・ロト・(四ト・(川下・(日下・(日下)

We find another double resonance formulation in [NPA 729 743 (2003)]

$$\begin{split} f_1^{NPA} &= \alpha \left[D_{\rho} \left(P_{\rho} \right) \left(l^2 + Q \cdot k - 2k \cdot l \right) + D_{\rho} \left(P_{\rho}' \right) \left(l^2 + Q \cdot k + 2k \cdot l \right) \right] \\ f_2^{NPA} &= -\alpha \left[D_{\rho} \left(P_{\rho} \right) + D_{\rho} \left(P_{\rho}' \right) \right] \\ f_3^{NPA} &= -\alpha \left[D_{\rho} \left(P_{\rho} \right) - D_{\rho} \left(P_{\rho}' \right) \right] \\ \alpha &= -C \tilde{\epsilon} \frac{M_V^2}{9} \frac{f^2 G^2}{M_{\omega}^2} D_{\phi} \left(Q^2 \right), P_{\rho} = \frac{(Q - l + k)}{2}, P_{\rho}' = \frac{(Q + l + k)}{2} \end{split}$$

 Contents

 Introduction

 Asymmetry

 FSR models

 Results

 Conclusion

KL model

In this case the ϕ decayment is by mean of the kaon loop, after that the foton and an f_0 emerge and it decays in pions, the structure functions are:

◆□> ◆□> ◆目> ◆目> ◆目> 三三 のへで

In this case the ϕ decayment is by mean of the kaon loop, after that the foton and an f_0 emerge and it decays in pions, the structure functions are:

$$\begin{split} f_{1} &= \frac{g_{s}g_{\phi}}{f_{\phi}} \frac{g_{f}}{2\pi^{2}m_{K^{+}}^{2}} \widetilde{I}_{P}^{ab} F_{\phi}\left(s\right) P_{f}\left(q^{2}\right) e^{i\delta_{B}},\\ f_{2} &= 0,\\ f_{3} &= 0. \end{split}$$

◆□> ◆□> ◆目> ◆目> ◆目> 三三 のへで

In this case the ϕ decayment is by mean of the kaon loop, after that the foton and an f_0 emerge and it decays in pions, the structure functions are:

$$\begin{split} f_1 &= \frac{g_s g_\phi}{f_\phi} \frac{g_f}{2\pi^2 m_{K^+}^2} \widetilde{I}_P^{ab} F_\phi\left(s\right) P_f\left(q^2\right) e^{i\delta_B}, \\ f_2 &= 0, \\ f_3 &= 0. \end{split}$$

where

I

$$F_{\phi}\left(s
ight)=rac{m_{\phi}^{2}}{s-m_{\phi}^{2}+i\sqrt{s}\Gamma_{\phi}}, \qquad P_{f}\left(q^{2}
ight)=rac{1}{q^{2}-m_{f}^{2}+im_{f}\Gamma_{f}},$$

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

The angle δ_B is the elastic background phase and it must be included with the kaon loop [PRD56 4084 (1997)]. This phase is very relevant in the interference term. In this case $\delta_B = b\sqrt{q^2 - 4m_\pi^2}$ with $b = 75^\circ/\text{GeV}$.

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

The angle δ_B is the elastic background phase and it must be included with the kaon loop [PRD56 4084 (1997)]. This phase is very relevant in the interference term. In this case $\delta_B = b\sqrt{q^2 - 4m_\pi^2}$ with $b = 75^\circ/\text{GeV}$. The kaon loop function is given by

$$\widetilde{I}_{P}^{ab} = \frac{1}{2(a-b)} - \frac{2}{(a-b)^{2}} \left[f\left(\frac{1}{b}\right) - f\left(\frac{1}{a}\right) \right] + \frac{a}{(a-b)^{2}} \left[g\left(\frac{1}{b}\right) - g\left(\frac{1}{a}\right) \right],$$
$$f(z) = \begin{cases} -\left[\arcsin\left(\frac{1}{2\sqrt{z}}\right) \right]^{2} & z > \frac{1}{4} \\ \frac{1}{4} \left[\ln\left(\frac{n_{+}}{n_{-}}\right) - i\pi \right]^{2} & z < \frac{1}{4} \end{cases}$$

Bremsstrahlung and double resonance ϕ decayment

KL model

$$g(z) = \begin{cases} \sqrt{4z - 1} \arcsin\left(\frac{1}{2\sqrt{z}}\right) & z > \frac{1}{4} \\ \frac{1}{2}\sqrt{1 - 4z} \left(\ln\left|\frac{n_+}{n_-}\right| - i\pi\right) & z < \frac{1}{4} \end{cases}$$

< □ > < □ > < □ > < Ξ > < Ξ > ...

-2

Bremsstrahlung and double resonance ϕ decayment

KL model

$$g(z) = \begin{cases} \sqrt{4z - 1} \arcsin\left(\frac{1}{2\sqrt{z}}\right) & z > \frac{1}{4} \\ \frac{1}{2}\sqrt{1 - 4z} \left(\ln\left|\frac{n_+}{n_-}\right| - i\pi\right) & z < \frac{1}{4} \end{cases}$$
$$a = \frac{Q^2}{m_K^2}, \quad b = \frac{q^2}{m_K^2}, \quad n_\pm = \frac{1}{2} \left[1 \pm \sqrt{1 - 4z}\right].$$

Luis Armando Gallegos Infante Pion charge asymmetries in $e^+e^- \rightarrow \pi^+ \pi^- \gamma$ below 1 GeV

< □ > < □ > < □ > < Ξ > < Ξ > ...

E 940

Linear sigma model

This model is very similar to the previous one, just replacing the strong amplitude for the LSM[EPJC 26, 253 (2002)], i.e.

・ロン ・回 と ・ヨン ・ヨン

Linear sigma model

This model is very similar to the previous one, just replacing the strong amplitude for the LSM[EPJC 26, 253 (2002)], i.e.

$$g_{s}g_{f}P_{f}\left(q^{2}\right)\rightarrow\mathcal{A}\left(K^{+}K^{-}\rightarrow\pi^{+}\pi^{-}\right)_{L\sigma M}=\sqrt{2}\mathcal{A}\left(K^{+}K^{-}\rightarrow\pi^{0}\pi^{0}\right)_{L\sigma M}$$

・ロン ・回 と ・ヨン ・ヨン

Linear sigma model

This model is very similar to the previous one, just replacing the strong amplitude for the LSM[EPJC 26, 253 (2002)], i.e.

$$g_{s}g_{f}P_{f}\left(q^{2}\right)\rightarrow\mathcal{A}\left(K^{+}K^{-}\rightarrow\pi^{+}\pi^{-}\right)_{L\sigma M}=\sqrt{2}\mathcal{A}\left(K^{+}K^{-}\rightarrow\pi^{0}\pi^{0}\right)_{L\sigma M}$$

$$\begin{aligned} \mathcal{A} \left(K^{+} K^{-} \to \pi^{0} \pi^{0} \right)_{L\sigma M} &= \frac{m_{\pi}^{2} - q^{2}/2}{2f_{\pi} f_{K}} \\ &+ \frac{q^{2} - m_{\pi}^{2}}{2f_{\pi} f_{K}} \left[\frac{m_{K}^{2} - m_{\sigma}^{2}}{D_{\sigma} \left(q^{2} \right)} c\phi_{S} \left(c\phi_{S} - \sqrt{2} s\phi_{S} \right) \right. \\ &+ \left. \frac{m_{K}^{2} - m_{f_{0}}^{2}}{D_{f_{0}} \left(q^{2} \right)} s\phi_{S} \left(s\phi_{S} + \sqrt{2} c\phi_{S} \right) \right] \end{aligned}$$

The ϕ decayment under U χ PT model is calculated with the Feynman diagrams[PRD76 074012 (2007)]

< 17 b

글 제 제 글 제

 Contents

 Introduction

 Asymmetry

 FSR models

 Results

 Conclusion

The resulting amplitude is

< □ > < □ > < □ > < Ξ > < Ξ > ...

-2

Bremsstrahlung and double resonance ϕ decayment

$U\chi PT$

The resulting amplitude is

$$-i\mathcal{M} = \frac{2}{\sqrt{3}} \frac{e}{2\sqrt{2}\pi^2 m_K^2 f^2} \frac{t_{K\pi}^0}{\sqrt{3}} \left[G_V \left(\widetilde{I}_P^{ab} (Q \cdot k \ g_{\mu\nu} - Q_\mu k_\nu) \right) Q_\alpha \right. \\ \left. - \left(G_V - \frac{F_V}{2} \right) \frac{m_K^2}{4} g_K(q^2) g_{\mu\nu} k_\alpha \right] \eta^{\alpha\nu} \epsilon^\mu$$

< □ > < □ > < □ > < Ξ > < Ξ > ...

-2

Bremsstrahlung and double resonance ϕ decayment

$U\chi PT$

The resulting amplitude is

$$-i\mathcal{M} = \frac{2}{\sqrt{3}} \frac{e}{2\sqrt{2}\pi^2 m_K^2 f^2} \frac{t_{K\pi}^0}{\sqrt{3}} \left[G_V \left(\widetilde{I}_P^{ab} (Q \cdot k \ g_{\mu\nu} - Q_\mu k_\nu) \right) Q_\alpha \right. \\ \left. - \left(G_V - \frac{F_V}{2} \right) \frac{m_K^2}{4} g_K(q^2) g_{\mu\nu} k_\alpha \right] \eta^{\alpha\nu} \epsilon^\mu$$

and the structure functions are

・ロン ・回 と ・ヨン ・ヨン

Ξ 9QQ

Bremsstrahlung and double resonance ϕ decayment

$U\chi PT$

The resulting amplitude is

$$-i\mathcal{M} = \frac{2}{\sqrt{3}} \frac{e}{2\sqrt{2}\pi^2 m_K^2 f^2} \frac{t_{K\pi}^0}{\sqrt{3}} \left[G_V \left(\widetilde{I}_P^{ab} (Q \cdot k \ g_{\mu\nu} - Q_\mu k_\nu) \right) Q_\alpha \right. \\ \left. - \left(G_V - \frac{F_V}{2} \right) \frac{m_K^2}{4} g_K(q^2) g_{\mu\nu} k_\alpha \right] \eta^{\alpha\nu} \epsilon^\mu$$

and the structure functions are

$$f_{1} = \frac{-1}{\sqrt{3}} \frac{F_{V}}{3f^{2}} \frac{1}{Q^{2} - M_{\phi}^{2} + i\Gamma_{\phi}M_{\phi}} \frac{t_{K\pi}^{0}}{\pi^{2}\sqrt{3}} \times \\ \left(\frac{Q^{2}}{m_{K}^{2}} G_{V} \tilde{l}_{P}^{ab} - \frac{1}{4} \left(G_{V} - \frac{F_{V}}{2}\right) g_{K}(q^{2})\right), \\ f_{2} = 0, f_{3} = 0.$$

・ロン ・回 と ・ヨン ・ヨン

Ξ 9QQ

Conter Introducti Asymme FSR mod Resu Conclusi	ts Numeric calculation try KL
Numeric calculation	

We developed a fortran program based on montecarlo including the experimental restrictions reported by KLOE to obtain the asymmetry: $45^\circ < \theta_\pi < 135^\circ$, $45^\circ < \theta_\gamma < 135^\circ$ and an energy cut for the foton of 10 MeV.

◆□ > ◆□ > ◆臣 > ◆臣 > ―臣 = のへで

Numeric calculation KL LSM $U\chi PT$

Bremsstrahlung and double resonance

Figure: Asymmetry without ϕ decayment

Co Intro Asy FSR Co	Intents Intent

For the KL model we use

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Contents Introduction Asymmetry FSR models Results Conclusion	Numeric calculation KL LSM $U_\chi PT$

KL

For the KL model we use

Parameter	Value
m_f (MeV)	980
Γ_f (MeV)	70
g_s^2 (GeV ²)	3.61
g_{ϕ}^2	19.56
g_f^2 (GeV ²)	7.78
f_{ϕ}^2	179.14
$g_{ ho}^2$	35.95
$f_{ ho}^2$	24.66

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・のへで

Contents Introduction Asymmetry FSR models Results Conclusion	Numeric calculation KL LSM U_{χ} PT
--	--

Figure: Asymmetry using KL model

Contents Introduction Asymmetry FSR models Results Conclusion	: calculation
--	---------------

For the linear sigma model we use for the $f_0 m_f = 980$ MeV, $\Gamma_f = 70$ MeV and for the sigma [PRD69, 074033 (2004)] $m_{\sigma} = 528$ MeV y $\Gamma_{\sigma} = 414$ MeV, the best results are obtained with a scalar angle $\phi_S = -5^{\circ}$.

Contents Introduction Asymmetry FSR models Results Conclusion	Numeric calculation KL LSM $U_\chi PT$
---	--

Figure: Asymmetry with $L\sigma M$

э

Cont	ents
Introdu	tion Numeric calculation
Asymn	etry KL
FSR	dels LSM
Re	ults $U\chi PT$
Conclu	sion

For the U χ PT case we use the results for VMD limit i.e. $G_V - \frac{F_V}{2} = 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○ ◆

Contents Introduction Asymmetry FSR models Results Conclusion	Numeric calculation KL KL LSM $\mathbf{U}_{\chi}\mathbf{PT}$
---	---

Figure: Asymmetry with $U\chi PT$

э

Contents Introduction Asymmetry FSR models Results Conclusion	Numeric calculation KL LSM $\mathbf{U}_{\chi}\mathbf{PT}$
--	---

Figure: Asymmetry with the three models using JHEP formulation for double resonance

A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Contents Introduction Asymmetry FSR models Results Conclusion	Numeric calculation KL LSM $\mathbf{U}_{\chi}\mathbf{PT}$
--	---

Figure: Asymmetry with the three models using NPA formulation for double resonance

A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Contents Introduction Asymmetry FSR models Results Conclusion	
Conclusion	

• The asymmetry is a consecuence of the interference between ISR y FSR.

◆□> ◆□> ◆目> ◆目> ◆目> 三三 のへで

Contents Introduction Asymmetry FSR models Results Conclusion	
Conclusion	

- The asymmetry is a consecuence of the interference between ISR y FSR.
- Different FSR models can be included by mean of structure functions.

Contents Introduction Asymmetry FSR models Results Conclusion	
Conclusion	

- The asymmetry is a consecuence of the interference between ISR y FSR.
- Different FSR models can be included by mean of structure functions.
- The Bremmstrahlung is the dominant contribution.

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Contents Introduction Asymmetry FSR models Results Conclusion	
Conclusion	

- The asymmetry is a consecuence of the interference between ISR y FSR.
- Different FSR models can be included by mean of structure functions.
- The Bremmstrahlung is the dominant contribution.
- We use trhee different models to describe the ϕ decayment (KL,LSM y U χ PT).

◆□ > ◆□ > ◆臣 > ◆臣 > ―臣 = のへで

	Contents Introduction Asymmetry FSR models Results Conclusion		
Conclusion			

- The asymmetry is a consecuence of the interference between ISR y FSR.
- Different FSR models can be included by mean of structure functions.
- The Bremmstrahlung is the dominant contribution.
- We use trhee different models to describe the ϕ decayment (KL,LSM y U χ PT).
- In general U χ PT describes better the low energy region of the asymmetry.

	Contents Introduction Asymmetry FSR models Results Conclusion		
Conclusion			

- The asymmetry is a consecuence of the interference between ISR y FSR.
- Different FSR models can be included by mean of structure functions.
- The Bremmstrahlung is the dominant contribution.
- We use trhee different models to describe the ϕ decayment (KL,LSM y U χ PT).
- In general U χ PT describes better the low energy region of the asymmetry.
- Relative phases are relevant to describe the asymetry

Contents Introduction Asymmetry FSR models Results Conclusion
--

Thank you!!!

・ロト ・回 ト ・ヨト ・ヨト

æ