Relativistic dynamics in graphene: Magnetic Catalysis & Quantum Hall Effect

Igor Shovkovy

POLYTECHNIC CAMPUS

XII MEXICAN WORKSHOP ON PARTICLES AND FIELDS NOVEMBER 9-14, 2009, MAZATLÁN, MÉXICO

What is graphene?

It is a single atomic layer of graphite, see

[Novoselov et al., Science 306, 666 (2004)]

2D crystal with hexagonal

lattice of carbon atoms

Scanning electron microscopy (SEM)

Lattice in coordinate/reciprocal space

Two carbon atoms per primitive cell
 Translation vectors

$$\mathbf{a}_1 = a\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right), \quad \mathbf{a}_2 = a\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right) \xrightarrow{\mathbf{a}_2} \xrightarrow{\mathbf{a}_3} \xrightarrow{\mathbf{a}_2} \xrightarrow{\mathbf{a}_3} \xrightarrow{$$

where *a* is the lattice constant
Reciprocal lattice vectors

$$\mathbf{b}_1 = 2\pi/a(1, 1/\sqrt{3}), \ \mathbf{b}_2 = 2\pi/a(1, -1/\sqrt{3})$$

- There are strong covalent sigma-bonds between nearest neighbors
- Hamiltonian

ARIZONA STATI University

$$H = -t \sum_{\mathbf{n}, \boldsymbol{\delta}_i, \sigma} \left[a_{\mathbf{n}, \sigma}^{\dagger} \exp\left(\frac{ie}{\hbar c} \boldsymbol{\delta}_i \mathbf{A}\right) b_{\mathbf{n} + \boldsymbol{\delta}, \sigma} + \text{c.c.} \right]$$

where $a_{\mathbf{n},\sigma}$ and $b_{\mathbf{n}+\delta,\sigma}$ are the annihilation operators of electrons with spin $\sigma=\uparrow,\downarrow$

The nearest neighbor vectors are

$$\delta_1 = (\mathbf{a}_1 - \mathbf{a}_2)/3, \quad \delta_2 = \mathbf{a}_1/3 + 2\mathbf{a}_2/3,$$

 $\boldsymbol{\delta}_3 = -\boldsymbol{\delta}_1 - \boldsymbol{\delta}_2 = -2\mathbf{a}_1/3 - \mathbf{a}_2/3$

Low energy Dirac fermions

 $\mathcal{L} = \sum_{\sigma=\pm 1} \bar{\Psi}_{\sigma}(t, \mathbf{r}) [i\gamma^{0}(\hbar\partial_{t} - i\mu_{\sigma}) + i\hbar v_{F}\gamma^{1}D_{x} + i\hbar v_{F}\gamma^{2}D_{y}]\Psi_{\sigma}(t, \mathbf{r})$

P. R. Wallace, Phys. Rev. **71**, <u>622</u> (1947) G.W. Semenoff, Phys. Rev. Lett. **53**, <u>2449</u> (1984)

Quantum Hall effect in graphene

November 13, 2009 XII Mexican Workshop on Particles and Fields, Mazatlán, 2009

Quantum Hall Effect at large B

There are new plateaus at

 $v = \pm 0, v = \pm 1, v = \pm 4$

i.e., the degeneracy of some Landau levels is $\hat{z}_{\text{b}}^{\text{F}}$

Abanin et al., PRL **98**, <u>196806</u> (2007) Jiang et al., PRL **99**, <u>106802</u> (2007) Checkelsky et al., PRL 100, <u>206801</u> (2008)

Most recent new plateau:

 $\nu=3$ (as well as $\nu=\frac{1}{3}$)

Andrei et al., doi: 10.1038/nature08522

Quantum Hall Effect at large B

There are new plateaus at

INIVERSITY

 $v = \pm 0, v = \pm 1, v = \pm 4$

i.e., the degeneracy of some Landau levels is $\frac{\widehat{\xi}}{\mathfrak{b}}_{\mathfrak{b}^{\hat{x}}}$

Abanin et al., PRL **98**, <u>196806</u> (2007) Jiang et al., PRL **99**, <u>106802</u> (2007) Checkelsky et al., PRL 100, <u>206801</u> (2008)

XII Mexican Workshop on Particles and Fields, Mazatlán, 2009

Latest Quantum Hall Plateaus

Magnetic catalysis (MC) scenario

VOLUME 73, NUMBER 26

PHYSICAL REVIEW LETTERS

26 DECEMBER 1994

Catalysis of Dynamical Flavor Symmetry Breaking by a Magnetic Field in 2 + 1 Dimensions

V. P. Gusynin,¹ V. A. Miransky,^{1,2} and I. A. Shovkovy¹

¹Bogolyubov Institute for Theoretical Physics, 252143 Kiev, Ukraine ²Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030 (Received 11 May 1994)

It is shown that in 2 + 1 dimensions, a constant magnetic field is a strong catalyst of dynamical flavor symmetry breaking, leading to generating a fermion dynamical mass even at the weakest attractive interaction between fermions. The effect is illustrated in the Nambu-Jona-Lasinio model in a magnetic field. The low-energy effective action in this model is derived, and the thermodynamic properties of the model are established.

$$\begin{split} E_n &= \sqrt{2n|eB|} \ \Rightarrow \ E_n = \sqrt{2n|eB|} + \Delta_0^2 \\ \text{where} \qquad \Delta_0 &\sim \sqrt{|eB|} \implies \ \mathbf{v}=0 \end{split}$$

In relation to graphene (before discovery of graphene!):

Khveshchenko, Phys. Rev. Lett. **87**, <u>206401</u> (2001); ibid. **87**, <u>246802</u> (2001) Gorbar, Gusynin, Miransky, & Shovkovy, Phys. Rev. B **66**, <u>045108</u> (2002)

Quantum Hall Ferromagnetism (QHF)

Arovas, Karlhelde, & Lilliehook, Phys. Rev. B **59**, <u>13147</u> (1999) Ezawa & Hasebe, Phys. Rev. B **65**, <u>075311</u> (2002) Nomura & MacDonald, Phys. Rev. Lett. **96**, <u>256602</u> (2006) Alicea & Fisher, Phys. Rev. B 74, <u>075422</u> (2006)

- Spin/valley degeneracy of the half-filled Landau level is lifted by the exchange (repulsive Coulomb) interaction
- This is similar to the Hund's Rule(s) in atomic physics
- Lowest energy state: the wave function is antisymmetric in coordinate space (electrons are as far apart as possible), i.e., it is symmetric in spin (or valley) indices
- This is nothing else but ferromagnetism

General Approach

Model Hamiltonian

[Gorbar, Gusynin, Miransky, Shovkovy, arXiv:0806.0846, Phys. Rev. B 78 (2008) 085437]

$$H = H_0 + H_C + \int d^2 \mathbf{r} \left[\mu_B B \Psi^{\dagger} \sigma^3 \Psi - \mu_0 \Psi^{\dagger} \Psi \right]$$

where

$$H_0 = v_F \int d^2 \mathbf{r} \,\overline{\Psi} \left(\gamma^1 \pi_x + \gamma^2 \pi_y \right) \Psi,$$

is the Dirac Hamiltonian, and

$$H_C = \frac{1}{2} \int d^2 \mathbf{r} d^2 \mathbf{r}' \Psi^{\dagger}(\mathbf{r}) \Psi(\mathbf{r}) U_C(\mathbf{r} - \mathbf{r}') \Psi^{\dagger}(\mathbf{r}') \Psi(\mathbf{r}')$$

is the Coulomb interaction term.

Note that
$$\Psi_s^T = (\psi_{KAs}, \psi_{KBs}, \psi_{K'Bs}, \psi_{K'As})$$

Spin index $v_F \approx 10^6 \text{ m/s}$

Symmetry

- The Hamiltonian $H = H_0 + H_C$ possesses "flavor" U(4) symmetry
- 16 generators read (spin
 generators)

$$\frac{\sigma^{lpha}}{2} \otimes I_4, \quad \frac{\sigma^{lpha}}{2i} \otimes \gamma^3, \quad \frac{\sigma^{lpha}}{2} \otimes \gamma^5, \quad \text{and} \quad \frac{\sigma^{lpha}}{2} \otimes \gamma^3 \gamma^5$$

- The Zeeman term breaks U(4) down to $U(2)_+ \times U(2)_-$
- Dirac mass breaks $U(2)_{\rm s}$ down to $U(1)_{\rm s}$

Energy scales in the problem

Landau energy scale $\epsilon_B \equiv \sqrt{2\hbar |eB_\perp| v_F^2/c} \simeq 424\sqrt{|B_\perp[\mathrm{T}]|} \mathrm{K}$ Zeeman energy $Z \simeq \mu_B B = 0.67 B[T] \text{ K}$ • Dynamical mass scales ($Z \ll A \leq M \ll \epsilon_{R}$) $A \equiv \frac{G_{\rm int} |eB_{\perp}|}{8\pi\hbar c} = \frac{\sqrt{\pi}\lambda\epsilon_B^2}{4\Lambda}$ In the model of Ref. [Phys. Rev. B 78 (2008) <u>085437</u>] $M = 4.84 \times 10^{-2} \epsilon_B$ and $A = 3.90 \times 10^{-2} \epsilon_B$

Full propagator

We use the following general ansatz:

$$G_s = \left[(i\hbar\partial_t + \underline{\mu}_s + \underline{\tilde{\mu}}_s \gamma^3 \gamma^5) \gamma^0 - v_F(\boldsymbol{\pi} \cdot \boldsymbol{\gamma}) - \underline{\tilde{\Delta}}_s + \underline{\Delta}_s \gamma^3 \gamma^5 \right]^{-1}$$

Electron chemical potential

"Pseudospin" chemical potential

Physical meaning of the order parameters

$$\Delta_s: \quad \bar{\Psi}\gamma^3\gamma^5 P_s \Psi = \psi_{KAs}^{\dagger}\psi_{KAs} - \psi_{K'As}^{\dagger}\psi_{K'As} - \psi_{KBs}^{\dagger}\psi_{KBs} + \psi_{K'Bs}^{\dagger}\psi_{K'Bs}$$
$$\tilde{\Delta}_s: \quad \bar{\Psi}P_s \Psi = \psi_{KAs}^{\dagger}\psi_{KAs} + \psi_{K'As}^{\dagger}\psi_{K'As} - \psi_{KBs}^{\dagger}\psi_{KBs} - \psi_{K'Bs}^{\dagger}\psi_{K'Bs}$$

$$\mu_3: \qquad \Psi^{\dagger} \sigma^3 \Psi = \frac{1}{2} \sum_{\kappa=K,K'} \sum_{a=A,B} \left(\psi^{\dagger}_{\kappa a+} \psi_{\kappa a+} - \psi^{\dagger}_{\kappa a-} \psi_{\kappa a-} \right)$$

 $\tilde{\mu}_s: \qquad \Psi^{\dagger} \gamma^3 \gamma^5 P_s \Psi = \psi^{\dagger}_{KAs} \psi_{KAs} - \psi^{\dagger}_{K'As} \psi_{K'As} + \psi^{\dagger}_{KBs} \psi_{KBs} - \psi^{\dagger}_{K'Bs} \psi_{K'Bs}$

T-odd mass

Dirac mass

Schwinger Dyson equation

Hartree-Fock (mean field) approximation:

Three types of solutions

- S (singlet with respect to $U(2)_s$ where $s=\uparrow,\downarrow$)
 - Order parameters: μ_3 and/or Δ_s
 - Symmetry: $U(2)_+ \times U(2)_-$
- T (triplet with respect to $U(2)_s$)
 - Order parameters: $\widetilde{\mu}_{
 m s}$ and/or $\widetilde{\Delta}_{
 m s}$
 - Symmetry: $U(1)_+ \times U(1)_-$
- *H* (*hybrid*, i.e., singlet + triplet)
 - Order parameters: mixture of S and T types
 - Symmetry: $U(2)_+ \times U(1)_-$ or $U(1)_+ \times U(2)_-$

Solutions at LLL ($\mu_0 \ll \epsilon_B$)

November 13, 2009 XII Mexican Workshop on Particles and Fields, Mazatlán, 2009

Singlet solution vs. T (v=0 QHE state)

• "Flavor" symmetry: $Z=0: U(4) \rightarrow U(2)_+ \times U(2)_-$

November 13, 2009 XII Mexican Workshop on Particles and Fields, Mazatlán, 2009

Singlet solution (v=0 & 2 QHE states)

November 13, 2009 XII Mexican Workshop on Particles and Fields, Mazatlán, 2009

20

Solutions for v=1 and v=2 QHE states

• T=0 hybrid solution for v=1 state

$$\widetilde{\Delta}_{+} = M, \quad \widetilde{\mu}_{+} = As_{\perp}, \quad \mu_{+} = \overline{\mu}_{+} - 4A, \quad \Delta_{+} = 0$$

$$\Delta_{-} = \tilde{\mu}_{-} = 0, \quad \mu_{-} = \bar{\mu}_{-} - 3A, \quad \Delta_{-} = -s_{\perp}M$$

Symmetry: $U(1)_{+} \times U(2)_{-}$

• T=0 singlet solution for v=2 state

$$\begin{split} \widetilde{\Delta}_{+} &= \widetilde{\mu}_{+} = 0, \\ \widetilde{\Delta}_{-} &= \widetilde{\mu}_{-} = 0, \end{split} \qquad \mu_{+} &= \overline{\mu}_{+} - 7A, \quad \Delta_{+} &= -s_{\perp}M \\ \widetilde{\Delta}_{-} &= \widetilde{\mu}_{-} = 0, \\ \mu_{-} &= \overline{\mu}_{-} - 7A, \quad \Delta_{-} &= -s_{\perp}M \\ \end{split}$$
Symmetry: $U(2)_{+} \times U(2)_{-}$

Hybrid solutions at 1st Landau level

November 13, 2009 XII Mexican Workshop on Particles and Fields, Mazatlán, 2009

Phase diagram

Theory vs. experiment (1)

- Theory predicts all "new" QHE plateaus (v=0, v=∓1, v=∓4) observed in a strong magnetic field
- The plateaus $v=\mp 3$, $v=\mp 5$ are also predicted (now the v=3 plateau has also been seen!)
- Weak plateaus v=∓3, v=∓5 are in qualitative agreement with a suggested large width of higher Landau levels [Giesbers et al., Phys. Rev. Lett. 99, 206803 (2007)]

Theory vs. experiment (2)

The edge state puzzle

- v=0 state: is it a quantum Hall metal or insulator?
 - In other words: are there gapless edge states?
- Abanin et al [Phys. Rev. Lett. 96, <u>176803</u> (2006)] suggested that

XII Mexican Workshop on Particles and Fields, Mazatlán, 2009

Gapless edge states

- General criteria for the existence of gapless modes among the edge states are [Gusynin et al., Phys. Rev. B 77, 205409 (2007); Phys. Rev. B 79, 115431 (2009)]
 - Zigzag edges:
 - Armchair edges:

armchair edge

- $$\begin{split} & \triangleright |\mu_s^{(\pm)}| > |\Delta_s^{(\mp)}| \\ & \text{where} \quad \mu_s^{(\pm)} \equiv \mu_s \pm \tilde{\mu}_s \\ & \text{and} \quad \Delta_s^{(\pm)} \equiv \Delta_s \pm \tilde{\Delta}_s \end{split}$$
- > always when some singlet gaps are present
 > |µ_s| > |∆_s| if only triplet gaps are present

Summary

- Insight into non-perturbative dynamics of QHE in graphene comes from relativistic physics
- A rich phase diagram of graphene is proposed
- Both MC and QHF necessarily coexist ("two sides of the same coin") and lift the degeneracy of Landau levels in graphene
- Qualitative agreement with experiments is already evident (details are to be worked out)

Edge state puzzle can be resolved