Relativistic dynamics in

graphene:

Magnetic Catalysis \& Quantum Hall Effect

Igor Shovkovy

XII MEXICAN WORKSHOP ON PARTICLES AND FIELDS NOVEMBER 9-14, 2009, MAZATLÁN, MÉXICO

What is graphene?

- It is a single atomic layer of graphite, see

 [Novoselov et al., Science 306, $\underline{666}$ (2004)]

Lattice in coordinate/reciprocal space

- Two carbon atoms per primitive cell
- Translation vectors

$$
\mathbf{a}_{1}=a\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right), \quad \mathbf{a}_{2}=a\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)
$$

where a is the lattice constant

- Reciprocal lattice vectors

$$
\mathbf{b}_{1}=2 \pi / a(1,1 / \sqrt{3}), \mathbf{b}_{2}=2 \pi / a(1,-1 / \sqrt{3})
$$

Tight binding model

- There are strong covalent sigma-bonds between nearest neighbors
- Hamiltonian

$$
H=-t \sum_{\mathbf{n}, \boldsymbol{\delta}_{i}, \sigma}\left[a_{\mathbf{n}, \sigma}^{\dagger} \exp \left(\frac{i e}{\hbar c} \boldsymbol{\delta}_{i} \mathbf{A}\right) b_{\mathbf{n}+\boldsymbol{\delta}, \sigma}+\text { c.c. }\right]
$$

where $a_{\mathbf{n}, \sigma}$ and $b_{\mathbf{n}+\delta, \sigma}$ are the annihilation operators of electrons with spin $\sigma=\uparrow, \downarrow$

- The nearest neighbor vectors are

$$
\begin{aligned}
& \boldsymbol{\delta}_{1}=\left(\mathbf{a}_{1}-\mathbf{a}_{2}\right) / 3, \quad \boldsymbol{\delta}_{2}=\mathbf{a}_{1} / 3+2 \mathbf{a}_{2} / 3, \\
& \boldsymbol{\delta}_{3}=-\boldsymbol{\delta}_{1}-\boldsymbol{\delta}_{2}=-2 \mathbf{a}_{1} / 3-\mathbf{a}_{2} / 3
\end{aligned}
$$

Low energy Dirac fermions

$\mathcal{L}=\sum_{\sigma= \pm 1} \bar{\Psi}_{\sigma}(t, \mathbf{r})\left[i \gamma^{0}\left(\hbar \partial_{t}-i \mu_{\sigma}\right)+i \hbar v_{F} \gamma^{1} D_{x}+i \hbar v_{F} \gamma^{2} D_{y}\right] \Psi_{\sigma}(t, \mathbf{r})$
P. R. Wallace, Phys. Rev. 71, 622 (1947)
G.W. Semenoff, Phys. Rev. Lett. 53, $\underline{2449}$ (1984)

Quantum Hall Effect at large B

There are new plateaus at
Zhang et al., PRL 96, 136806 (2006)

$$
v= \pm 0, v= \pm 1, v= \pm 4
$$

i.e., the degeneracy of some Landau levels is lifted

Abanin et al., PRL 98, 196806 (2007) Jiang et al., PRL 99, 106802 (2007) Checkelsky et al., PRL 100, 206801 (2008)

Most recent new plateau:

$$
\boldsymbol{v}=3 \text { (as well as } \nu=1 / 3)
$$

Andrei et al., doi:10.1038/nature08522

Quantum Hall Effect at large B

There are new plateaus at
Zhang et al., PRL 96, 136806 (2006)

$$
v= \pm 0, v= \pm 1, v= \pm 4
$$

i.e., the degeneracy of some Landau levels is lifted

Abanin et al., PRL 98, 196806 (2007) Jiang et al., PRL 99, 106802 (2007) Checkelsky et al., PRL 100, 206801 (2008)

Latest Quantum Hall Plateaus

Suspended graphene

The most recent new (integer) plateau:

$$
v=3
$$

Also, the first fractional QH plateau:

$$
v=1 / 3
$$

Magnetic catalysis (MC) scenario

Catalysis of Dynamical Flavor Symmetry Breaking by a Magnetic Field in $2+1$ Dimensions

V.P. Gusynin, ${ }^{1}$ V. A. Miransky, ${ }^{1,2}$ and I. A. Shovkovy ${ }^{1}$
${ }^{1}$ Bogolyubov Institute for Theoretical Physics, 252143 Kiev, Ukraine
${ }^{2}$ Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030
(Received 11 May 1994)

It is shown that in $2+1$ dimensions, a constant magnetic field is a strong catalyst of dynamical flavor symmetry breaking, leading to generating a fermion dynamical mass even at the weakest attractive interaction between fermions. The effect is illustrated in the Nambu-Jona-Lasinio model in a magnetic field. The low-energy effective action in this model is derived, and the thermodynamic properties of the model are established.

where

$$
\Longrightarrow \quad v=0
$$

In relation to graphene (before discovery of graphene!):

Khveshchenko, Phys. Rev. Lett. 87, 206401 (2001); ibid. 87, 246802 (2001) Gorbar, Gusynin, Miransky, \& Shovkovy, Phys. Rev. B 66, 045108 (2002)

Quantum Hall Ferromagnetism (QHF)

Arovas, Karlhelde, \& Lilliehook, Phys. Rev. B 59, 13147 (1999)
Ezawa \& Hasebe, Phys. Rev. B 65, 075311 (2002)
Nomura \& MacDonald, Phys. Rev. Lett. 96, 256602 (2006)
Alicea \& Fisher, Phys. Rev. B 74, 075422 (2006)

- Spin/valley degeneracy of the half-filled Landau level is lifted by the exchange (repulsive Coulomb) interaction
- This is similar to the Hund's Rule(s) in atomic physics
- Lowest energy state: the wave function is antisymmetric in coordinate space (electrons are as far apart as possible), i.e., it is symmetric in spin (or valley) indices
- This is nothing else but ferromagnetism

General Approach

Model Hamiltonian

[Gorbar, Gusynin, Miransky, Shovkovy, arXiv:0806.0846, Phys. Rev. B 78 (2008) 085437]

$$
H=H_{0}+H_{C}+\int d^{2} \mathbf{r}[\underbrace{\mu_{B}^{B B} \Psi^{\dagger} \sigma^{3} \Psi}_{\text {Zeeman term }}-\mu_{0} \Psi^{\dagger} \Psi]
$$

where

$$
H_{0}=v_{F} \int d^{2} \mathbf{r} \bar{\Psi}\left(\gamma^{1} \pi_{x}+\gamma^{2} \pi_{y}\right) \Psi
$$

is the Dirac Hamiltonian, and

$$
H_{C}=\frac{1}{2} \int d^{2} \mathbf{r} d^{2} \mathbf{r}^{\prime} \Psi^{\dagger}(\mathbf{r}) \Psi(\mathbf{r}) U_{C}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \Psi^{\dagger}\left(\mathbf{r}^{\prime}\right) \Psi\left(\mathbf{r}^{\prime}\right)
$$

is the Coulomb interaction term.
Note that $\underset{(\underset{S}{T}}{\Psi_{S}}=\left(\psi_{K A s}, \psi_{K B s}, \psi_{K^{\prime} B s}, \psi_{K^{\prime} A s}\right)$
Spin index $\quad v_{F} \approx 10^{6} \mathrm{~m} / \mathrm{s}$

Symmetry

- The Hamiltonian $\quad H=H_{0}+H_{C}$. possesses "flavor" $U(4)$ symmetry
- 16 generators read (spin \otimes pseudospin)
$\frac{\sigma^{\alpha}}{2} \otimes I_{4}, \quad \frac{\sigma^{\alpha}}{2 i} \otimes \gamma^{3}, \quad \frac{\sigma^{\alpha}}{2} \otimes \gamma^{5}, \quad$ and $\quad \frac{\sigma^{\alpha}}{2} \otimes \gamma^{3} \gamma^{5}$
- The Zeeman term breaks $U(4)$ down to $U(2)+U(2)$.
- Dirac mass breaks $U(2)_{\mathrm{s}}$ down to $U(1)_{\mathrm{s}}$

Energy scales in the problem

- Landau energy scale

$$
\epsilon_{B} \equiv \sqrt{2 \hbar\left|e B_{\perp}\right| v_{F}^{2} / c} \simeq 424 \sqrt{\left|B_{\perp}[\mathrm{T}]\right|} \mathrm{K}
$$

- Zeeman energy

$$
Z \simeq \mu_{B} B=0.67 B[\mathrm{~T}] \mathrm{K}
$$

- Dynamical mass scales $\left(Z \ll A \leq M \ll \epsilon_{B}\right)$

$$
A \equiv \frac{G_{\mathrm{int}}\left|e B_{\perp}\right|}{8 \pi \hbar c}=\frac{\sqrt{\pi} \lambda \epsilon_{B}^{2}}{4 \Lambda}
$$

- In the model of Ref. [Phys. Rev. B 78 (2008) 085437]

$$
M=4.84 \times 10^{-2} \epsilon_{B} \text { and } A=3.90 \times 10^{-2} \epsilon_{B}
$$

Full propagator

- We use the following general ansatz:
$i G_{s}=\left[\left(i \hbar \partial_{t}+\mu_{s}+\tilde{\mu}_{s} \gamma^{3} \gamma^{5}\right) \gamma^{0}-v_{F}(\boldsymbol{\pi} \cdot \gamma)-\tilde{\Delta}_{s}+\Delta_{s} \gamma^{3} \gamma^{5}\right]^{-1}$

Electron chemical potential

"Pseudospin" chemical potential

Dirac mass
T-odd mass

- Physical meaning of the order parameters
$\Delta_{s}: \quad \bar{\Psi} \gamma^{3} \gamma^{5} P_{s} \Psi=\psi_{K A s}^{\dagger} \psi_{K A s}-\psi_{K^{\prime} A s}^{\dagger} \psi_{K^{\prime} A s}-\psi_{K B s}^{\dagger} \psi_{K B s}+\psi_{K^{\prime} B s}^{\dagger} \psi_{K^{\prime} B s}$
$\tilde{\Delta}_{s}: \quad \bar{\Psi} P_{s} \Psi=\psi_{K A s}^{\dagger} \psi_{K A s}+\psi_{K^{\prime} A s}^{\dagger} \psi_{K^{\prime} A s}-\psi_{K B s}^{\dagger} \psi_{K B s}-\psi_{K^{\prime} B s}^{\dagger} \psi_{K^{\prime} B s}$
$\mu_{3}: \quad \Psi^{\dagger} \sigma^{3} \Psi=\frac{1}{2} \sum_{\kappa=K, K^{\prime}} \sum_{a=A, B}\left(\psi_{\kappa a+}^{\dagger} \psi_{\kappa a+}-\psi_{\kappa a-}^{\dagger} \psi_{\kappa a-}\right)$
$\tilde{\mu}_{s}: \quad \Psi^{\dagger} \gamma^{3} \gamma^{5} P_{s} \Psi=\psi_{K A s}^{\dagger} \psi_{K A s}-\psi_{K^{\prime} A s}^{\dagger} \psi_{K^{\prime} A s}+\psi_{K B s}^{\dagger} \psi_{K B s}-\psi_{K^{\prime} B s}^{\dagger} \psi_{K^{\prime} B s}$

Schwinger Dyson equation

- Hartree-Fock (mean field) approximation:
(a) Coulomb interaction

(b) Contact interaction

Three types of solutions

- $\boldsymbol{S}\left(\right.$ singlet with respect to $U(2)_{\mathrm{s}}$ where $\left.\mathrm{s}=\uparrow, \downarrow\right)$
- Order parameters: μ_{3} and/or $\Delta_{\text {s }}$
- Symmetry: $U(2)_{+} \times U(2)$
- \boldsymbol{T} (triplet with respect to $U(2)_{s}$)
- Order parameters: $\tilde{\mu}_{\mathrm{s}}$ and/or $\tilde{\Delta}_{\mathrm{s}}$
- Symmetry: $U(1)_{+} \times U(1)$.
- \boldsymbol{H} (hybrid, i.e., singlet + triplet)
- Order parameters: mixture of S and T types
- Symmetry: $U(2)_{+} \times U(1)$. or $U(1)_{+} \times U(2)$.

Solutions at LLL $\left(\mu_{0} \ll \epsilon_{B}\right)$

Singlet solution vs. $T(v=0$ QHE state $)$

- $T=0: \tilde{\Delta}_{+}=\tilde{\mu}_{+}=0, \quad \mu_{+}=\bar{\mu}_{+}-A, \quad \Delta_{+}=s_{\perp} M$,
$\tilde{\Delta}_{-}=\tilde{\mu}_{-}=0, \quad \mu_{-}=\bar{\mu}_{-}+A, \quad \Delta_{-}=-s_{\perp} M$
- "Flavor" symmetry:
$\mathbf{Z}=\mathbf{0}: U(4) \rightarrow U(2)+\cup(2)$.
$\mathbf{Z} \neq \mathbf{0}: \quad U(2)+\times U(2)$.

AS 1 ARIZONA STATE
 Singlet solution ($v=0$ \& 2 QHE states)

Rsylatice
 Solutions for $v=1$ and $v=2$ QHE states

- $T=0$ hybrid solution for $v=1$ state

$$
\begin{aligned}
& \widetilde{\Delta}_{+}=M, \quad \tilde{\mu}_{+}=A s_{\perp}, \quad \mu_{+}=\bar{\mu}_{+}-4 A, \quad \Delta_{+}=0 \\
& \tilde{\Delta}_{-}=\tilde{\mu}_{-}=0, \quad \mu_{-}=\bar{\mu}_{-}-3 A, \quad \Delta_{-}=-s_{\perp} M
\end{aligned}
$$

Symmetry: $U(1)_{+} \times U(2)$.

- $T=0$ singlet solution for $v=2$ state

$$
\begin{array}{lll}
\tilde{\Delta}_{+}=\tilde{\mu}_{+}=0, & \mu_{+}=\bar{\mu}_{+}-7 A, & \Delta_{+}=-s_{\perp} M \\
\tilde{\Delta}_{-}=\tilde{\mu}_{-}=0, & \mu_{-}=\bar{\mu}_{-}-7 A, & \Delta_{-}=-s_{\perp} M
\end{array}
$$

Symmetry: $U(2)_{+} \times U(2)$.

Hybrid solutions at $1^{\text {st }}$ Landau level

Phase diagram

Theory vs. experiment (1)

- Theory predicts all "new" QHE plateaus ($v=0$, $v=\mp 1, v=\mp 4$) observed in a strong magnetic field
- The plateaus $v=\mp 3, v=\mp 5$ are also predicted (now the $v=3$ plateau has also been seen!)
- Weak plateaus $v=\mp 3, v=\mp 5$ are in qualitative agreement with a suggested large width of higher Landau levels [Giesbers et al., Phys. Rev. Lett. 99, 206803 (2007)]

Theory vs. experiment (2)

The edge state puzzle

- $v=0$ state: is it a quantum Hall metal or insulator?
- In other words: are there gapless edge states?
- Abanin et al [Phys. Rev. Lett. 96, 176803 (2006)] suggested that

QHF $\Rightarrow \quad$ gapless modes present
MC \Rightarrow no gapless modes

Gapless edge states

- General criteria for the existence of gapless modes among the edge states are [Gusynin et al., Phys. Rev. B 77, 205409 (2007); Phys. Rev. B 79, 115431 (2009)]
- Zigzag edges:

$>\left|\mu_{s}^{(\pm)}\right|>\left|\Delta_{s}^{(\mp)}\right|$
where $\mu_{s}^{(\pm)} \equiv \mu_{s} \pm \tilde{\mu}_{s}$
and $\Delta_{s}^{(\pm)} \equiv \Delta_{s} \pm \widetilde{\Delta}_{s}$
- Armchair edges:

> always when some singlet gaps are present
$>\left|\mu_{s}\right|>\left|\widetilde{\Delta}_{s}\right|$ if only triplet gaps are present

Summary

- Insight into non-perturbative dynamics of QHE in graphene comes from relativistic physics
- A rich phase diagram of graphene is proposed
- Both MC and QHF necessarily coexist ("two sides of the same coin") and lift the degeneracy of Landau levels in graphene
- Qualitative agreement with experiments is already evident (details are to be worked out)
- Edge state puzzle can be resolved

