Physics of Gamma-Ray Bursts

Bing Zhang Department of Physics & Astronomy University of Nevada Las Vegas, USA

XII Mexican Workshop on Particles and Fields Mazatlan, Mexico Nov. 13, 2009

Bursts of Gamma-rays from Heaven

Irregular light Curves

Non-thermal, smoothly joint broken power law spectrum

Stage 1: 1969 (1973) - 1990 (discovery and "dark" era)

THE ASTROPHYSICAL JOURNAL, 182:L85-L88, 1973 June 1 © 1973. The American Astronomical Society. All rights reserved. Printed in U.S.A.

OBSERVATIONS OF GAMMA-RAY BURSTS OF COSMIC ORIGIN

RAY W. KLEBESADEL, IAN B. STRONG, AND ROY A. OLSON

University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico Received 1973 March 16; revised 1973 April 2

ABSTRACT

Sixteen short bursts of photons in the energy range 0.2-1.5 MeV have been observed between 1969 July and 1972 July using widely separated spacecraft. Burst durations ranged from less than 0.1 s to \sim 30 s, and time-integrated flux densities from $\sim 10^{-5}$ ergs cm⁻² to $\sim 2 \times 10^{-4}$ ergs cm⁻² in the energy range given. Significant time structure within bursts was observed. Directional information eliminates the Earth and Sun as sources.

Subject headings: gamma rays - X-rays - variable stars

By mid 90's: > 118 different theoretical models ! A theorist's heaven or hell?

-				
	100	P -1	- Ch.	
	21			
				-

	#	Author	Year	Reference	Main	2nd	Place	Description	
			Pub		Body	Body			
1.		Colgate	1968	CJPhys. 46, S476	ST		COS	SN shocks stellar surface in distant galaxy	
2.		Colgate	1974	ApJ, 187, 333	ST		COS	Type II SN shock brem, inv Comp scat at stellar surface	
3.		Stecker et al.	1973	Nature, 245, PS70	ST		DISK	Stellar superflare from nearby star	
4.		Stecker et al.	1973	Nature, 245, PS70	WD		DISK	Superflare from nearby WD	
5.		Harwit et al.	1973	ApJ, 186, L37	NS	COM	DISK	Relic comet perturbed to collide with old galactic NS	
6.		Lamb et al.	1973	Nature, 246, PS52	WD	ST	DISK	Accretion onto WD from flare in companion	
7.		Lamb et al.	1973	Nature, 246, PS52	NS	ST	DISK	Accretion onto NS from flare in companion	
8.		Lamb et al.	1973	Nature, 246, PS52	BH	ST	DISK	Accretion onto BH from flare in companion	
9.		Zwicky	1974	Ap & SS, 28, 111	NS		HALO	NS chunk contained by external pressure escapes, explodes	
10.		Grindlay et al.	1974	ApJ, 187, L93	DG		SOL	Relativistic iron dust grain up-scatters solar radiation	
11.		Brecher et al.	1974	ApJ, 187, L97	ST		DISK	Directed stellar flare on nearby star	
12.		Schlovskii	1974	SovAstron, 18, 390	WD	COM	DISK	Comet from system's cloud strikes WD	
13.		Schlovskii	1974	SovAstron, 18, 390	NS	COM	DISK	Comet from system's cloud strikes NS	
14.		Bisnovatyi- et al.	1975	Ap & SS, 35, 23	ST		COS	Absorption of neutrino emission from SN in stellar envelope	
15.		Bisnovatyi- et al.	1975	Ap & SS, 35, 23	ST	SN	COS	Thermal emission when small star heated by SN shock wave	
16.		Bisnovatyi- et al.	1975	Ap & SS, 35, 23	NS		COS	Ejected matter from NS explodes	
17.		Pacini et al.	1974	Nature, 251, 399	NS		DISK	NS crustal starquake glitch; should time coincide with GRB	
18.		Narlikar et al.	1974	Nature, 251, 590	WH		COS	White hole emits spectrum that softens with time	
19.		Tsygan	1975	A&A, 44, 21	NS		HALO	NS corequake excites vibrations, changing E & B fields	
20.		Chanmugam	1974	ApJ, 193, L75	WD		DISK	Convection inside WD with high B field produces flare	
21.		Prilutski et al.	1975	Ap & SS, 34, 395	AGN	ST	COS	Collapse of supermassive body in nucleus of active galaxy	
22.		Narlikar et al.	1975	Ap & SS, 35, 321	WH		COS	WH excites synchrotron emission, inverse Compton scattering	
23.		Piran et al.	1975	Nature, 256, 112	BH		DISK	Inv Comp scat deep in ergosphere of fast rotating, accreting BH	
24.		Fabian et al.	1976	Ap & SS, 42, 77	NS		DISK	NS crustquake shocks NS surface	
25.		Chanmugam	1976	Ap & SS, 42, 83	WD		DISK	Magnetic WD suffers MHD instabilities, flares	
26.		Mullan	1976	ApJ, 208, 199	WD		DISK	Thermal radiation from flare near magnetic WD	
27.		Woosley et al.	1976	Nature, 263, 101	NS		DISK	Carbon detonation from accreted matter onto NS	
28.		Lamb et al.	1977	ApJ, 217, 197	NS		DISK	Mag grating of accret disk around NS causes sudden accretion	
29.		Piran et al.	1977	ApJ, 214, 268	BH		DISK	Instability in accretion onto rapidly rotating BH	
30.		Dasgupta	1979	Ap & SS, 63, 517	DG		SOL	Charged intergal rel dust grain enters sol sys, breaks up	
31.		Tsygan	1980	A&A, 87, 224	WD		DISK	WD surface nuclear burst causes chromospheric flares	
32.		Tsygan	1980	A&A, 87, 224	NS		DISK	NS surface nuclear burst causes chromospheric flares	
33.		Ramaty et al.	1981	Ap & SS, 75, 193	NS		DISK	NS vibrations heat atm to pair produce, annihilate, synch cool	
34.		Newman et al.	1980	ApJ, 242, 319	NS	AST	DISK	Asteroid from interstellar medium hits NS	
35.		Ramaty et al.	1980	Nature, 287, 122	NS		HALO	NS core quake caused by phase transition, vibrations	
36.		Howard et al.	1981	ApJ, 249, 302	NS	AST	DISK	Asteroid hits NS, B-field confines mass, creates high temp	
37.		Mitrofanov et al.	1981	Ap & SS, 77, 469	NS		DISK	Helium flash cooled by MHD waves in NS outer layers	
38.		Colgate et al.	1981	ApJ, 248, 771	NS	AST	DISK	Asteroid hits NS, tidally disrupts, heated, expelled along B lines	
39.		van Buren	1981	ApJ, 249, 297	NS	AST	DISK	Asteroid enters NS B field, dragged to surface collision	
40.		Kuznetsov	1982	CosRes, 20, 72	MG		SOL	Magnetic reconnection at heliopause	

Nemiroff,

1993

Stage 2: 1991-1996 (CRGO era)

Two major advances:

- 1. Two types: Long/soft vs. short/hard
- 2. Isotropic distribution

Short/Hard vs. Long/Soft

BATSE results (Kouveliotou et al. 1993)

Isotropic Distribution

2704 BATSE Gamma-Ray Bursts

Distance and Energetics Galactic:

$$L_{\gamma}(\text{iso}) = 4\pi d^2 F_{\gamma} = 1.2 \times 10^{42} \text{erg/s} \left(\frac{d}{30 \text{kpc}}\right)^2 \left(\frac{F_{\gamma}}{10^{-5} \text{erg/s/cm}^2}\right)$$

Cosmological:

$$L_{\gamma}(\text{iso}) = 4\pi d^2 F_{\gamma} = 1.2 \times 10^{51} \text{ erg/s} \left(\frac{d}{1 \text{ Gpc}}\right)^2 \left(\frac{F_{\gamma}}{10^{-5} \text{ erg/s/cm}^2}\right)$$

For comparison:

 $L_{\otimes} \sim 10^{33} \text{ erg/s}, \ L_{gal} \sim 10^{44} \text{ erg/s}, \ L_{AGN,M} \sim 10^{48} \text{ erg/s}$

Stage 3: 1997-2003 (BeppoSAX-HETE era)

Three major advances:

- 1. Afterglow of long GRBs (as predicted by the fireball model) - host galaxy, redshift ...
- 2. SN association with some long GRBs
 - massive star origin
- 3. Collimation of jets

Discovery of afterglow of long GRBs

Optical afterglow: van Paradijs 1997

GRB 970228

X-ray afterglow: Costa et al. 1997

NATURE VOL 386 17 APRIL 1997

Measuring redshift of long GRBs

GRBs are at cosmological distances, and GRBs are the most luminous explosions in the universe.

Metzger et al. 2007

Distance and Energetics Galactic:

$$L_{\gamma}(\text{iso}) = 4\pi d^2 F_{\gamma} = 1.2 \times 10^{42} \text{erg/s} \left(\frac{d}{30 \text{kpc}}\right)^2 \left(\frac{F_{\gamma}}{10^{-5} \text{erg/s/cm}^2}\right)$$

Cosmological:

$$L_{\gamma}(\text{iso}) = 4\pi d^2 F_{\gamma} = 1.2 \times 10^{51} \text{erg/s} \left(\frac{d}{1 \text{Gpc}}\right)^2 \left(\frac{F_{\gamma}}{10^{-5} \text{erg/s/cm}^2}\right)$$

For comparison:

$$L_{\odot} \sim 10^{33} \text{ erg/s}, \ L_{gal} \sim 10^{44} \text{ erg/s}, \ L_{AGN,M} \sim 10^{48} \text{ erg/s}$$

Gamma-ray bursts: the most violent explosions after Big Bang!

GRB/SN associations - SN properties (Pian et al. 2007)

Collapsars: model for long GRBs

Woosley 93

MacFadyen & Woosley 99

GRB from a collapsing star

"Generic" Fireball Shock Model

Synchrotron radiation (1)

- Single electron emission;
- Emission from powerlaw electrons;
- Cooling spectrum;

Meszaros & Rees 1997; Sari, Piran & Narayan 1998

Synchrotron radiation (2)

Meszaros & Rees 1997; Sari, Piran & Narayan 1998

GRB collimation (Jet)

Rhoads 1997, 1999; Sari et al. 1999

Structured vs. uniform jets Zhang & Meszaros 2002 Rossi, Lazzati & Rees 2002

Confronting data with theory

Wijers & Galama 99

Stanek et al. 99

Stage 4: 2004-2008 (Swift era)

Three major advances:

- 1. Short GRB afterglow
- 2. Canonical X-ray afterglow revealing mixed afterglow emission
- 3. Diversity of GRBs

Swift & 2005 Revolution

GRB 050509B

GRB 050724

Gehrels et al. 2005; Fox et al. 2005; Barthelmy et al. 2005; Berger et al. 2005

Compact star mergers: model for short GRBs

Paczynski 86

Eicher et al. 89

NS-NS merger

NS-BH merger

Typical XRT afterglow

(Nousek et al. 2006, ApJ; O'Brien et al., 2006, ApJ)

Canonical lightcurves: Internal or external?

(Zhang et al. 2006; Nousek et al. 2006; Panaitescu et al. 2006)

Swift revolution:

Prompt GRB emission: internal emission Afterglow: superposition of external and internal emission

centralphotosphereinternalexternal shocksengine(reverse)(forward)

What is the jet composition (baryonic vs. Poynting flux)? Where is (are) the dissipation radius (radii)? How is the radiation generated (synchrotron, Compton scattering, thermal)?

Historical Remark (1)

- Paczynski (86) & Goodman (86): a fireball of photons, electron-positron pairs expands freely. When it becomes optically-thin gamma-ray burst, but a blackbody, not Band spectrum!

- Shemi & Piran (90): add some baryons, energy is converted to kinetic energy

central photosphere engine)

Historical Remark (2)

Rees & Meszaros (92), Meszaros & Rees (93): the kinetic energy is reconverted back to non-thermal gamma-ray emission in external shock.
Rees & Meszaros (94), Paczynski & Xu (94): the kinetic energy is reconverted back to non-thermal gamma-ray emission in internal shocks.

Historical Remark (3)

- Meszaros & Rees (00), Meszaros et al. (02), Rees & Meszaros (05), Pe'er et al. (06), Thompson et al. (07), loka et al. (07), Pe'er (08): the observed GRB emission could be superposition of the photosphere emission (may be Comptonized) and that from the internal shocks. The photosphere emission (like CMB) can be bright. The thermal peak can even be Ep of the spectrum.

Superposition spectra?

Alternative view:

Magnetic dissipation in a Poynting-flux dominated flow

(Usov 92; Thompson 94 ... Lyutikov & Blandford 03)

Fermi Revolution: High energy prompt emission/afterglow

Launched on June 11th,

Constrain LIV Extra spectral component Minimum Γ ??

Constrain GRB ejecta composition

What do we learn from GRB 080916C?

Featureless Band-function covering 6 orders of magnitude Not a surprise? A surprise? Three features are missing: No pair cutoff observed No SSC component detected Lack of thermal component

					Flux	Flux
	А			$E_{\rm peak}$	50-300 keV	100 MeV-10 GeV
Time bin & Range	$(s) (\gamma \text{ cm}^{-2} \text{ s}^{-1} \text{ keV}^{-1})$	α	β	(keV)	$(\gamma \text{ cm}^{-2} \text{ s}^{-1})$	$(\gamma \text{ cm}^{-2} \text{ s}^{-1})$
a: 0.004 to 3.58	$(55 \pm 2) \times 10^{-3}$	-0.58 ± 0.04	-2.63 ± 0.12	440 ±27	6.87 ± 0.12	$(2.5 \pm 1.6) \times 10^{-4}$
b: 3.58 to 7.68	$(35 \pm 1) \times 10^{-3}$	$-1.02\ {\pm}0.02$	-2.21 ± 0.03	$1170\pm\!\!140$	5.63 ± 0.09	$(4.8\pm 0.6)\times 10^{-3}$
c: 7.68 to 15.87	$(21 \pm 1) \times 10^{-3}$	$-1.02 \ {\pm}0.04$	$-2.16\pm\!\!0.03$	$590\pm\!80$	2.98 ± 0.06	$(1.7 \pm 0.2) \times 10^{-3}$
d: 15.87 to 54.78	$(19.4 \pm 0.7) \times 10^{-3}$	-0.92 ± 0.03	$-2.22\pm\!0.02$	400 ±26	2.44 ± 0.03	$(7.1 \pm 0.9) \times 10^{-4}$
e: 54.78 to 100.86	$(5.2 \pm 0.9) \times 10^{-3}$	-1.05 ± 0.10	-2.16 ± 0.05	230 ± 57	0.54 ± 0.02	$(1.5 \pm 0.4) \times 10^{-4}$

Abdo et al (2009)

GRB 080916C: Radius constraints (Zhang & Pe'er 09)

Emission must come from a large radius far away from the photosphere.

Expected photosphere emission from a fireball

Piran et al. 93 $\Gamma \propto R$ T' $\propto R^{-1}$ Meszaros et al. 93T = Γ T' $\propto R R^{-1} = T_0$ A $\propto R^2 \Gamma^{-2} \propto R^2 R^{-2} = A_0$ L_{th} $\sim L_w > L_y$

$$L_{th} = \begin{cases} L_w, & \eta > \eta_*, \ R_{ph} < R_c, \\ L_w(\eta/\eta_*)^{8/3}, & \eta < \eta_*, \ R_{ph} > R_c. \end{cases}$$
$$\eta_* = (L_w \sigma_T / 8\pi m_p c^3 R_0)^{1/4}$$

Meszaros & Rees (00)

Meszaros, Ramirez-Ruiz, Rees & Zhang (02)

Expected photosphere emission from a fireball (Zhang & Pe'er 09)

-The thermal residual emission from the fireball is TOO bright to be consistent with the data

- In order to hide the thermal component, a significant amount of ejecta energy is initially not in the thermal form

- The flow has to be Poynting-flux dominated at the central engine!

Sigma: ratio between Poynting flux and baryonic flux: $\sigma = L_P/L_b$

 σ At least ~ 20, 15 for GRB 080916C

Kill Three Birds with One Stone

- Invoking a Poynting flux dominated flow can explain the lack of the three expected features
 - Non-detection of the pair cutoff feature is consistent with a large energy dissipation radius
 - Non-detection of the SSC feature is naturally expected, since in a Poynting flux dominated flow, the SSC power is expected to be much less that the synchrotron power
 - Non-detection of the photosphere thermal component is consistent with the picture, since most energy can be retained in the form of Poynting flux energy rather than thermal energy
- Also consistent with
 - Numerical modeling
 - Polarization observation of early optical afterglow of GRB 090102 (Steele et al.)

New Surprise: Thermal emission in GRB 090902B!

Ryde et al. (2009); Pe'er et al. (2009) in preparation

Energy (keV)

This is a Paczynski-Goodman "fireball"!

GRB 090902B - cont.

GRB 090902B - cont.

Inferences from the Fermi observations

- The broad-band Fermi GBM/LAT data can be used to constrain GRB jet composition.
- GRB composition is diverse. Magnetization parameter σ may vary in a wide range.
- At least GRB 080916C is very likely Poynting flux dominated at the central engine; at least GRB 090902B is very likely a hot fireball.

GRBs & Physics

Future milestones?

- Gamma-ray/X-ray polarization measurements?
- High energy neutrino detection?
- Connection to ultra high energy cosmic rays?
- Gravitational wave detection?

High energy neutrinos from GRBs

GRBs as HE neutrino sources

the acceleration phase (in some cases) pn process (GeV) Bahcall & Meszaros 00 Site 2: in internal shocks pγ process (0.1-1 PeV) Waxman & Bahcall 97 Guetta et al. 04 Gupta & Zhang 06

Site 3: in external shocks (both forward and reverse) py process (0.1-1 EeV) Waxman & Bahcall 00, Dai & Lu 01 (~ 1 PeV) Fan, Zhang & Wei 05

Another site for long GRBs

Site 4. Internal shocks inside the starMeszaros & Waxman 01(this component is also valid for failed GRBs)Razzaque et al. 03,04pγ process; pp process (TeV)Dermer & Atoyan 03

Issue: Are GRBs baryonic & magnetic?

- If GRBs are mainly baryonic, hydro-shocks exist and the above-mentioned neutrino signals should be expected
- However, if GRBs are mainly magnetic i.e. Poynting flux dominated, then the expected neutrino signals should be lower.
- Fermi observations show the existence of both types - maybe GRBs have a range of composition.

Implications

 Optimistically, IceCube will soon detect HE neutrino signals from individual bursts and the GRB diffuse neutrino background.

• Pessimistically, the real HE neutrino flux level from GRBs is much lower

• If no detections, tight constraints would suggest the magnetic origin of GRBs

Neutrino oscillation from collapsar jets

Sahu & Zhang (2009)

- For "choked" GRBs, TeV neutrinos can be produced by interaction of the choked jet and the star;
- The He envelope is the right size for neutrino oscillation to occur inside the star (for certain oscillation parameters);
- The final arrival species ratio is modified: 1:1.3:1.3 or 1:1.1:1.1 (instead of 1:1:1)

Gravitational waves from GRBs?

NS - NS mergers

NS - BH mergers

"Long" vs. "Short" - dual meanings

Popular quotes in GRB conferences & literature:

- This long GRB may be "short"
- That short GRB may be "long"
- This is a long "short" (or "long" short) GRB
- That is a short "long" (or "short" long) GRB

Phenomenological: Long vs. Short

Physical: **Type II (massive star GRBs) vs. Type I (compact star GRBs)**

How to tell the physical category from the observations? Multiple observational criteria needed!

Criterion	Type I	Type II	Issues
Duration	Usually short, but can	Long without short/hard spike,	No clear separation line.
	have extended emission.	can be shorter than 1s in rest frame.	•
Spectrum	Usually hard (soft tail)	Usually soft	Large dispersion
Spectral Lag	Usually short	Usually long, can be short.	Related to variability time scale
$E_{\gamma,iso}$	Low (on average)	High (on average)	Wide dstribution in both
$E_p - E_{\gamma,iso}$	Usually off the track.	Usually on the track.	Some Type II off the track.
$L^p_{\gamma,iso}$ -lag	Usually off the track.	Usually on the track.	Some Type II off the track.
SN association	No.	Yes.	Some Type II may have no association.
Medium type	Low- n ISM.	Wind or High- n ISM.	Large scatter of n distribution.
$E_{K,iso}$	Low (on average)	High (on average)	Large dispersion
Jet angle	Wide (on average)	Narrow (on average)	Difficult to identify jet breaks
E_{γ} and E_K	Low (on average)	High (on average)	Type I BZ model \sim Type II.
Host galaxy type	e Elliptical, early and late	e Late	Deep spectroscopy needed.
SSFR	Low or high	High (exception GRB 070125)	
Offset	Outskirt or outside	Well inside	How to claim association if outside?
z-distribution	Low average z	High average z	
L-function	?	Broken power law, 2-component	

TABLE 2 Observational criteria for physically classifying GRBs.

Zhang et al. (2009)

Compact Star Merger Model: Swift/BATSE do not square!

Virgili, Zhang, O'Brien & Troja (2009)

Monte Carlo simulation:

- 1. Input: luminosity function & z distribution (star formation + merger delay)
- 2. Use observed L-z to constrain LF and z distribution
- 3. Use the same model try to reproduce the BATSE Log N Log P

Most short GRBs need to follow star formation - consistent with star forming hosts

Implications

Optimistically, Advanced LIGO will start to detect GW signals due to NS-NS (NS-BH) mergers in a few years
Pessimistically, the majority of short GRBs are not associated with these mergers, the GW signals may not be strong

Conclusions

- We have learned a lot more about GRBs in recent years (Swift & Fermi)
- New breakthroughs are expected in the years to come (high energy neutrinos and gravitational waves)
- This is a dynamical field. New surprises always accompany!