Topics in Forward Physics at RHIC and the LHC

Sebastian White, Brookhaven

XII Mexican Workshop Mazatlan Nov. 10'09

<u>Outline</u>

- about 2009
- Hard Photoproduction
 - Method of equivalent quanta
 - applications in particle and nuclear physics
 - quarkonia at RHIC, LHC (and eIC)
- Coherence and diffraction
- Charge Exchange- forward neutron production and asymmetry at RHIC
- Potential for New Physics at the LHC

"Forward Physics"

- small momentum transfer to beam particle
- ie ATLAS-ALFA elastic scattering (nuclear +Coulomb): |t|= p_T^2 ~(10-20 MeV)²
- coherence enhances diffractive σ 's
- at LHC soft colorless exchange(γ ,"g-g", π^{\pm}) can have very hard interaction with the target

- will discuss: Heavy Ion photoproduction, d-Au diffraction dissociation, forward n,CEP-Higgs
- not covered:fragmentation in RHIC/LHC HI

2009 startup of LHC at CERN

- Post WWII experiment in international collaboration
- US an observer state. Cooperative agreements with Mexico and Brazil
- 3 Nobels (Charpak, Rubbia, Van derMeer)
- Home of the world wide web-"Information Management" proposal 04/89
- Most complex scientific project ever

• First lab to accumulate antimatter

TOM HANKS ANGELS& DEMONS

A RON HOWARD FILM

IN THEATERS MAY 15

ENTER THE SITE

THE ANGELS & DEMONS Patholllumination Contest on msn 4

• Sited on Swiss-French border near Geneva

Sous la conduite de M. A. Picot, les membres du Conseil européen pour la recherche nucléaire se sont rendus hier à Meyrin pour reconnaître le terrain où s'élèvera le Centre nucléaire (voir en Dernière heure)

(Photo Freddy Bertrand, Genève)

La Suisse du 30 octobre 1953

100 years of subatomic Structure

- Rutherford, Geiger, Marsden (1909)
 - Atom's 100th Birthday!
 - Rutherford's teacher, JJ Thomson, discovered
 electron 10 years earlier
 JJ Thomson & Ernest Rutherford
- "counter experiment"
 - Beam of 5 MegaVolt α particles from Radium C decay
- R. showed that α = Helium Nucleus

Resolving Power: Radius (electron,quark)<10^{-8*} Radius (atom) i.e. 1 centimeter/(New York-> Mazatlan)

Electrostatic Accelerators

- Cockroft-Walton
 - (~1 Megavolt)
- Rutherford α's
 (~5 Megavolt)
- Van der Graaf (10 Megavolt)
- Above 10 MeV use high field RF (0.1-1 GigaHz) up to 10's MeV/meter

<u>Colliders</u>

Center of Mass Energy (E_{CM})

•Stationary Target:

 $E_{CM} = \sqrt{2 \times E_{Beam} \times M_{TARGET}}$ i.e. 7 TeraVolt beam-> E_{CM} =0.12 TeV

•Collider:

 E_{CM} =2* E_{BEAM} i.e . E_{CM} ->14 Teravolt

Constituent E_{CM}

If the proton is composite E_{CM} ->2* E_{BEAM} *f, f= momentum fraction of the quarks

The Large Hadron Collider

• Total Beam energy:

- N_{proton}=27km*Frequency*(10¹¹proton/bunch)/c

->E_{total}=N_{proton}*7*10¹²eVolt=400 MegaJoule (=3 locomotives at top speed)

• Magnetic Field:

- E_{proton}(GeV)=15*B(kilogauss)*Rad_{LHC} (km)-> B=84 kgauss

- Magnet Temperature: 2° Kelvin
- Interaction Rate: 1 GigaHertz
- Radiation Dose/year:

- 2*10¹⁴neutrons/cm²(Si), 5 Gigarad (Zero Degree Calorimeter)

Inelastic Scattering: The Equivalent Photon Approximation

"On the theory of Collisions between Atoms and electrically Charged particles" E.Fermi translated by M.Gallinaro and SNW

$$E_{trans} = \frac{q \times b}{\left(b^2 + v^2 t^2\right)^{3/2}}$$

Expand in harmonics:

$$E_{trans} = \sum a_n^2 Cos(\frac{2\pi n \times t}{T})$$

⇒A "field of light" with intensity a_n² at frequency n/T For resonant excitation all a_n ineffective except at resonant frequency.

Cross sections

Equivalent field of light is calculated for each impact parameter.

But Impact parameter unmeasurable (i.e. ~10⁻¹⁰ meters)

->calculate an equivalent radius

$$\pi\rho^2 = 2\pi \int b \times P(b) \times db = \sigma$$

-> cross section (σ)

 $\frac{\text{Units:}}{1 \text{ barn}= 10^{-24} \text{ cm}^2}$

1barn/atom->~1 interaction for typical target

Diffractive Higgs@LHC = 10^{-14} barn

Other Applications of Equivalent Photon Approximation(1)

- N.Bohr (1914), C. von Weizsacker and E.Williams(1934, generalization to ultrarelativistic case)
- The power of coherence: beamstrahlung in electronproton colliders(V.Serbo et al. 1996). Coherent radiation off ~10⁹ proton bunch (l~ 1cm) <u>Coherence condition:</u>

EPA(2)

- The effect of coherence is significant in collisions with composite targets
 - Single photon process-> $(Z_{nucleus} * q_e)^2$ Two photon-> $(Z_{nucleus} * q_e)^4$
- The price of coherence is the limit on momentum transfer, $\Delta q < hc/(2\pi R_{nucleus})$ or $\lambda > target size$
- In high energy (colliding) beams the maximum

 Δq is boosted by $2\gamma_{beam}^2$,where γ =Lorentz factor

-> @LHC (2.75 TeraVolt/nucleon, Pb beam):

28 MeV->400 TeV

Heavy Ion Collider parameters

AB	L_{AB}	$\sqrt{s_{_NN}}$	$E_{\rm beam}$	γ_L	$k_{\rm max}$	$E_{\rm max}$	$\sqrt{s_{\gamma N}^{\max}}$	$\sqrt{s_{\gamma\gamma}^{\max}}$
	$(\mathrm{mb^{-1}s^{-1}})$	(TeV)	(TeV)		(GeV)	(TeV)	(GeV)	(GeV)
SPS								
In+In	-	0.017	0.16	168	0.30	5.71×10^{-3}	3.4	0.7
Pb+Pb	-	0.017	0.16	168	0.25	4.66×10^{-3}	2.96	0.5
RHIC								
Au+Au	0.4	0.2	0.1	106	3.0	0.64	34.7	6.0
pp	6000	0.5	0.25	266	87	46.6	296	196
LHC								
0+0	160	7	3.5	3730	243	1820	1850	486
Ar+Ar	43	6.3	3.15	3360	161	1080	1430	322
Pb+Pb	0.42	5.5	2.75	2930	81	480	950	162
pO	10000	9.9	4.95	5270	343	3620	2610	686
pAr	5800	9.39	4.7	5000	240	2400	2130	480
p P b	420	8.8	4.4	4690	130	1220	1500	260
pp	10^{7}	14	7	7455	2452	36500	8390	4504

EPA(3)-mechanisms of beam loss at the LHC

- Mutual Coulomb Dissociation(A. Baltz, SNW)
- measured with first RHIC data. Calibrates RHIC and LHC luminosity

Zq_e

Zq_e

Coherent Pair Production (various)

"inverse positron annihilation" (Breit-Wheeler)

gamma

Х

("photon flux")²

EPA(4): Vector meson photoproduction

• gluon distribution in proton or nucleus

PHENIX DI-LEPTONS

Central arm : $0 < |\eta| < 0.35$ e-pair(50%*2pi) Muon arm : $1.2 < |\eta| < 2.4$ µ-pair

I or 2 forward neutrons
"'rapidity gap"->veto BBC coincidence
E(EMC)>0.8 GeV

track cut to eliminate inelastic
overwhelming pion rejection

"new" 2007 ee sample

results consistent with 2004 data publication PHENIX sees significant incoherent component

Invariant mass distribution (Ntracks<4)

 $\sigma(\gamma + Au \rightarrow J / \psi) = A^{\alpha} \sigma(\gamma + p \rightarrow J / \psi), \alpha_{coh} = 1.01 \pm .07$

EPA(5)-Equivalent W Approximation

• Dominant Higgs production if M_H ≥ 300 GeV (Dawson):

EPA(6): Measuring the structure of Protons and Nuclei

 "Probing Small x parton densities in Ultraperipheral AA and pA collisions" (Strikman, Vogt, SNW)
 Rates for ATLAS Dijet photoproduction

Structure 🛱 Distribution of partons(=quarks, gluons) inside proton- similar to EPA

Coverage by ATLAS hard photoproduction

•Many other EPA analogies in QCD theory of strong interactions: e.g. Dokshitzer, Gribov, Lipatov, Altarelli and Parisi (DGLAP)

Inelastic Diffraction

- <u>Glauber (1955)</u>- deuteron "free dissociation"
- Feinberg & Pomeranchuk('56)
- "Diffraction Dissociation-50 Years Later"-SNW

Collisionless interaction->excitation to unbound n,p

$$d = \sum c_n \Psi_n, \Psi_n =$$
Scattering basis states

•Measured in PHENIX: σ =138 mbarn

- R(d-AU dissociation)= Luminosity×
 d breakup background ie on accelerator residual gas ->beam current
- -> special data runs changing beam separation
- •This result became basis for PHENIX luminosity calibration

Proton diffraction dissociation • Large coherence peak for λ > R_{proton}

K.Goulianos('83)

Observed for p,π,K, high energy γ's and nuclei
σ~A^{1/3}-> peripheral interaction
Responsible for K_L regeneration in particle physics

forward neutron production and single transverse spin asymmetry- $A_N = \frac{\eta > 6.5}{0.5}$

- ZDC (Zero Degree Calorimeter)
 - 3 modules : 5.1 λ_{I}

(1.7 λ_1 50 X₀ for each module) → Measure neutron energy

- SMD (Shower Max Detector)
 - Sintillator hodoscope in x and y
 - → Measure neutron position : Enables us to measure A_N
- Placed at a very forward angle

Physics : origin of neutron A_N

- Cross section measurements of very forward neutron production were performed at ISR.
 - Large cross section at high x_F region ($x_F \sim 0.8$)
 - No \vee s dependence, scaled by x_F (31-63 GeV)
- Consistent with one pion exchange model.
 - − In this picture A_N needs interference between spin flip and non-spin flip amplitudes. Pion exchange → spin flip

One pion exchange model

Polarized pp collision at $\sqrt{s} = 500 \text{ GeV}$

- In 2009 Pol. beams were colliding at √ s = 500 GeV for the first time.
 - Average polarization ~ 35% (online value)
- Neutron asymmetry persists at this high energy !
 - Local polarimetry performed with neutrons at all energies.

Red : Transverse run (Fill#10340) Blue : Longitudinal run (Fill#10382) ³

Forward neutron issues at high energy

B.Z. Kopeliovich, I.K. Potashnikov, I. Schmidt and J.Soffer,arXiv:0807.1449

- Asymmetry calculated with one pion exchange model disagrees badly with PHENIX data(x_F =0.6-0.8, and θ < 2 mrad.
 - possibly due to other reggeon exchanges. (*e.g.* a₁ exchange)

- testable with neutron
$$p_t$$
 dist.

$$\frac{d\sigma}{dp_t^2} \overrightarrow{?} \rightarrow \frac{1}{(p_t^2 + m_\pi^2)^2}$$

- Much interest in ATLAS inclusive n
 - >measures gap survival probability at LHC energy. determines CEP (below)

Diffraction(e-nucleus analogy)

• Diffractive electroproduction

non-diffractive

Diffractive Higgs production

non-diffractive

Higgs-> $Z^0Z^0+...$ $Z^0->e^+e^-, \mu^+\mu^-$

The ATLAS detector

- dimensions ~1/2 Notre Dame de Paris
- weight ~ Eiffel tower
- A 100 MegaPixel detector with 40MHz frame rate
 - (~ 1 million CD's/10sec)
- 80% of pixels in first~ 30 cm.
- Trigger filters data in real time(1GHz->200Hz)
 Data reduced to ~7km high stack of CD's/year

more forward: Central Exclusive Production as a tool for new physics

Central Exclusive Higgs Production

Central Exclusive Higgs production pp \rightarrow p H p : >3 fb (SM) ~10-100 fb (MSSM)

Cerenkov Radiation cone

Pre-production Hybrid photodetector

"A 10 picosecond time of flight detector using APD's", SNW et al.

Deep diffused avalanche photodiode

Evaluation of Hamamatsu HPD R10467-06, transit time spread & temporal shape

wavelength (nm)

(Precise detection of time of arrival of (single) photons from large distances)

Wavelength of single photon source is chosen to match the peak of the quantum efficiency of the HPD

Tuesday, November 10, 2009

Mode-locked femtosecond Ti:sapphire laser: frequency doubled from 800 nm to 400 nm

wavelength (nm)

WAVELENGTH (nm)

Temporal response of Hamamatsu HPD R10467-06

0.1

laser

- HPD has good temporal response with a rise/fall time of $\sim 0.3/0.4$ ns 1. (both are not instrument limited).
- 2. One and two photoelectron pulses were observed.

Transit time spread & time jitter, using 100 MHz leading-edge vs CFD vs PicoHarp

PicoHarp TTS measurement = square root($(32 \text{ ps})^2 - (18 \text{ ps}^2)$) = ~26.4 ps (FWHM) A short exponential tail remains.

-> going into beam test rms jitter from electronics&TTS< 10^{-11} sec

T. Tsang, M.Chiu, M. Diwan, S. White, G. Atoian, K. McDonald, K. Goulianos, D. Acker

Applications: RHIC upgrades, electron-Ion Collider, SuperBelle, ATLAS- AFP

Convert
$$10^7 - 10^9 / pulse \rightarrow 10^0$$

a thin foil (~50 micron Lexan) sufficient for 1e/cm^2 @ 1 meter and 90 deg.

Some Picks for LHC

Hard photoproduction(dijet,etc)	inclusive and diffractive PDFs (p and Pb)
Quarkonium photoproduction	$g^2(x)$
inclusive neutron at large xF	gap survival probability at LHC
$\pi^0, \eta^0, n, x_F > .8(ATLAS - ZDC)$	critical for CR physics at E>10^16 eV
very forward upgrade to ATLAS	new physics through central exclusive

Summary

- a century of progress on the structure of nuclei and the proton
- enabled calculation of new physics at level of $10^{-12} \times \sigma_{tot}$
- Forward physics covers a wide range of topics
- very significant among them is EM interactions of nuclei which will be the frontier for nuclear and proton structure in the next decade.

Extra Slides

<u>Summary</u>

- Significant advances in understanding of structure
- These enable searches to level of ~10⁻¹² of interaction rate
- Coherence is potentially a powerful tool for measurement and discovery of the Higgs

Time of Flight at 10 MHz with 10 picosecond resolution

BNL Instrumentation: T. Tsang

BNL Physics: M.Chiu, M. Diwan, S. White

BNL CAD: G. Atoian

(BNL ATF: V. Yakimenko)

Princeton: K. McDonald

Rockefeller: K. Goulianos

- D. Acker, co-Chair SUSB Trustees Applications:
- RHIC upgrades
- electron Ion Collider
- SuperBelle: Top counter, etc.
- ATLAS- AFP system

Time of Flight at 10 MHz with 10 picosecond resolution

T. Tsang, M.Chiu, M. Diwan, S. White, G. Atoian, K. McDonald, K. Goulianos, D. Acker

(BNL ATF: V. Yakimenko)

Princeton: K. McDonald

Rockefeller: K. Goulianos

D. Acker, co-Chair SUSB Trustees

Applications: RHIC upgrades, electron-Ion Collider, SuperBelle, ATLAS- AFP

- RHIC upgrades
- •electron Ion Collider
- SuperBelle: Top counter, etc.
- ATLAS- AFP system

Fast Timing Principle for ATLAS FP

Particles pass through Cerenkov radiator-> prompt light pulse(unlike scintillator)
Photons are nearly along particle path for gas radiator: tanθ_c~√(n²-1) so very small transit spread
Light peaked in UV- N(λ)~ (1-1/(n²(λ)))/λ²
For simple thin quartz radiator σ_t² = σ_{RADIATOR}²+σ_{PMT}² ~ 1.7*ℓ(cms.)+25/ℓ picosec so optimum at length ~ 1-2 cms

Quartz Radiator Better suited for pixels

Achieved σ_t =40 psec/bar with

PHOTONIS Planacon PMT

Gas Radiator

Better for light spread and collection bad for segmentation Achieved σ_t =13 psec with

Hamamatsu R380912 MCP-PMT

Handling antimatter(Sony Pictures)

Movie Star visits ATLAS

Decay modes of the Higgs

Central Exclusive Dijet @Tevatron

pp->p+JetJet(=q antiquark)+p

Supports exclusive H⁰ prediction of Khoze, Martin & Ryskin

Higgs Production and Decay

spinoff

High resolution timing could significantly improve image resolution and speed

<u>Rutherford Experiment</u>

 Measured Angular dependence of rate using scintillation flashes in ZnS
 R. Calculated an angular dependence of ~ ¹/_{v³} for a point nucleus and a distance of closest approach (potential energy= 5 MegaVolt) of ~30* 10⁻¹³ centimeters (a bit bigger than the gold nucleus)

(a)

the ATLAS detector

