EWSB in a Warped Dimension

Tony Gherghetta University of Melbourne

XII Mexican Workshop on Particles and Fields Mazatlan, Mexico

November 9, 2009

Outline

- Introduction/Motivation
- Warped Dimension and AdS/CFT
- Examples of EWSB
- Conclusion

Introduction What is the origin of mass?

Higgs mechanism

[Higgs `64; Englert, Brout `64; Guralnik, Hagen, Kibble `64]

- Higgs boson: $\langle H \rangle$ vacuum expectation value
- Elementary fermion and W, Z boson masses

W, Z-boson:	$m_{W,Z} \propto g \langle H angle$	\mathbf{X} $\langle H \rangle$	
Fermion:	$m_f \propto \lambda \langle H angle$	W, Z, f	W, Z, f

WW scattering

Gauge Hierarchy Problem:

Standard Model quantum corrections:

e.g. top quark
$$H$$
 H H

$$\delta m_H^2 = \Lambda^2$$
 ($\Lambda = \mathrm{UV\,cutoff}$)

What is the value of cutoff scale Λ ?

Why is $m_H \ll \Lambda \sim 10^{16} \text{GeV}?$

Possible explanations:

Cancellation or

$$\delta m_H^2 = \Lambda^2 - \Lambda^2 + \dots$$

e.g. supersymmetry, global symmetry

 $\Lambda \sim \text{TeV}$

e.g. strong dynamics, low-scale string theory

or just fine-tuned! $(\Lambda \sim M_P)$

e.g. string theory Landscape!

Warped Extra Dimension

New Example of "No Cancellation"

Warped Extra Dimension

"Slice of AdS₅"

[Randall, Sundrum 99]

 $k = \operatorname{AdS}$ curvature scale

5D metric :
$$ds^2 = e^{-2ky} dx^2 + dy^2$$

• Hierarchy problem: Higgs mass [Randall, Sundrum (1999)]

 $(\Lambda_{UV} \sim M_P, \pi kR \simeq 35)$

• Fermion masses: e.g. electron, top [TG, Pomarol (2000)]

$$\psi^{(0)} \sim e^{\left(\frac{1}{2} - c\right)ky}$$

c =bulk mass parameter

 $S_{\Psi} = \int d^4x dz \sqrt{-g} \left(\bar{\Psi} e^M_A \gamma^A D_M \Psi + \underbrace{M_{\Psi} \bar{\Psi} \Psi}_{\equiv c k} \right)$

Yukawa interaction:

$$S = -\int d^5 x \sqrt{-g} \,\lambda_{ij}^5 \left[\overline{\Psi}_{iL} \Psi_{jR} + h.c. \right] H(x) \delta(y - \pi R)$$
$$\equiv -\int d^4 x \sqrt{-g} \,\lambda_{ij} \left[\overline{\Psi}_{iL} \Psi_{jR} H + h.c. \right]$$

Obtain:

$$\lambda_{i} = \begin{cases} (\lambda_{i}^{(5)}k) \left(c_{i} - \frac{1}{2}\right) e^{(1 - 2c_{i})\pi kR} & c_{i} > \frac{1}{2} \\ (\lambda_{i}^{(5)}k) \left(\frac{1}{2} - c_{i}\right) & c_{i} < \frac{1}{2} \end{cases}$$

 $-0.5 \lesssim c_i \lesssim 0.64$ explains fermion hierarchy $m_e
ightarrow m_t$

Reality Check:

AdS/CFT correspondence

[Maldacena, `97; Gubser, Klebanov, Polyakov, `98; Witten `98]

Type IIB string theory on AdS5 x S5

\mathcal{N} =4 SYM in 4D

More generally:

5D AdS gravity
 $(R_{AdS} \gg l_s, g_s \rightarrow 0)$ **4D gauge theory (CFT)**
 $(g_{YM}^2 N \gg 1, N \gg 1)$

Boundary value of bulk field e.g $\Phi(x, z)\Big|_{UV} = \phi(x)$

Bulk masses e.g. m_{Φ}^2

Source of CFT operator O $\mathcal{L} = \phi(x)\mathcal{O}$

dimension of Oe.g. dim $\mathcal{O} = 2 + \sqrt{4 + m_{\Phi}^2/k^2}$

AdS/CFT dictionary

"Slice of AdS"

CFT + Dynamical elementary "source"

new mathematical tool!

4D interpretation:

🙀 Dynamical EW breaking (Weinberg `76; Susskind `79)

$$M_{IR} = e^{-\frac{8\pi^2}{g^2 b_i}} M_P$$

AdS/CFT:
$$e^{-\frac{8\pi^2}{g^2 b_i}} \leftrightarrow e^{-\pi kR}$$

🙀 Fermion masses: Large anomalous dimensions

$$\lambda \bar{\Psi} \Psi H \quad \longrightarrow \quad \dim \lambda < 0$$

AdS/CFT:
$$[\Psi] = \frac{3}{2} + \gamma_{\Psi} \leftrightarrow ck\bar{\Psi}\Psi$$

Bottom line:

Build 4D model with strong dynamics using 5D warped model

5D warped bulk SM

4D Partially Composite SM

What about electroweak precision tests?

Higgs sector must be custodially invariant

Global symmetry breaking

$$SU(2)_L \times SU(2)_R \to SU(2)_V$$

 $(SO(4) \to SO(3))$

to ensure

$$\rho = \frac{M_W}{M_Z \cos \theta_w} = 1 \qquad (\text{or } T = 0)$$

Peskin-Takeuchi parameters

$$\alpha S = 4g^2 \sin^2 \theta_w \Pi'_{3B}(0) \qquad \alpha T = 1 - \frac{\Pi_{33}(0)}{\Pi_{+-}(0)}$$

where $\Pi(p^2) = \Pi(0) + p^2 \Pi'(0) + \dots$

 (α)

Examples

I. Higgs as a pseudo Nambu-Goldstone boson

[Agashe, Contino, Pomarol (2004)]

Fermions
e.g. top quark:
$$\mathbf{5} = 2_{7/6} + 2_{1/6} + 1_{2/3}$$

Exotic states of charge 5/3!

SO(5) broken by top-quark $(m_{2_{7/6}} \gg m_t)$

Obtain:

 $m_H \lesssim 160 \,\mathrm{GeV} \qquad S \lesssim 0.3 \qquad T \simeq 0$

2. Higgsless [Csaki, Grojean, Pilo, Terning (2003)]

Break EW symmetry on IR brane via boundary conditions

WW scattering: Unitarized by exchange of Kaluza-Klein W-bosons Obtain: $T\simeq 0 \qquad S\simeq 1.15 \quad \text{X} \text{ (but can be tuned by delocalizing light fermions)}$

3. Emergent EWSB [Cui,TG,Wells (2009)]

Recall QCD: strong coupling at $\Lambda_{QCD} = e^{-\frac{8\pi^2}{g^2 b_i}} M_P$

• Hadron mass spectrum

proton: $m_P \propto \Lambda_{QCD}$

vector-mesons:

e.g. SU(2) isospin-triplet $~
ho^{0,\pm}~~m_
ho\propto\Lambda_{QCD}$

In fact, hidden local gauge symmetry! [Bando, Kugo, Uehara, Yamawaki, Yanagida 1985]

No Unitarity violation

Can one generate mass in the Standard Model with strong dynamics?

But,

[Carena, Ponton, Tait, Wagner 2002; Davoudiasl, Hewett, Rizzo 2002]

5D Model

5D action:

$$S = \int d^4x \, dz \sqrt{-g} \left[-\frac{1}{4} (F_{MN}^{La})^2 - \frac{1}{4} (F_{MN}^Y)^2 - \frac{1}{2} (kz) \delta(z - z_{UV}) \frac{\zeta_Q}{g_{Y5}^2 + g_{L5}^2} (g_{Y5} F_{\mu\nu}^{L3} + g_{L5} F_{\mu\nu}^Y)^2 - \frac{1}{2} (kz) \delta(z - z_{IR}) \left(\zeta_L (F_{\mu\nu}^{La})^2 + \zeta_Y (F_{\mu\nu}^Y)^2 \right) \right]$$

 $\zeta_Q, \zeta_L, \zeta_Y\,$ = boundary kinetic term coefficients

Mass spectrum:

$$m_{\gamma} = 0 \qquad \qquad m_W \simeq \sqrt{\frac{2}{\zeta_L k}} m_{IR}$$

$$m_Z \simeq \sqrt{\frac{2}{\zeta_L k} + \frac{2}{\zeta_Q k (1 + g_{L5}^2 / g_{Y5}^2)}} m_{IR}$$

For:
$$m_{IR} = \text{TeV}$$
 $\zeta_Q k \simeq 500, \zeta_L k \simeq 310, \zeta_Y k \simeq 0.1$
 \longrightarrow $m_W \simeq 80.4 \text{ GeV}, \quad m_Z \simeq 91.2 \text{ GeV}$
 $(m_{KK} \gtrsim 2 \text{ TeV})$

"Emergent" EWSB

Fermion masses

Assume universal bulk fermion profile

Add UV boundary fermion masses

Froggatt-Nielsen mechanism on UV brane generates fermion mass hierarchy

Electroweak constraints

Assume fermions on IR brane

Matching at IR brane requires: $g_5^2 k \simeq \frac{425}{1+\zeta/\Delta}$ $\Delta = \text{brane thickness}$

- **T** parameter Custodial symmetry in limit $\zeta_Y \to 0, \zeta_Q \to \infty$ i.e. same boundary condition for $A^{L1,2,3}$
- S parameter $S \simeq \frac{8\pi}{g^2 + g'^2} \cos 2\theta_w \sin^2 \theta_w (1 + \beta^2) (m_Z z_{IR})^2$

But depends on fermion details....

Composite W,Z boson

Momentum dependent form factor

$$F_{WWZ}(q^2) = \frac{1}{N_Z(q^2)N_W^2} \left\{ \left[\int_{z_{UV}}^{z_{IR}} \frac{dz}{kz} f^{L3}(q^2, z) (f_W(z))^2 \right] + \zeta_L f^{L3}(q^2, z_{IR}) (f_W(z_{IR}))^2 \right\}$$

Possible deviation in W, Z-boson vertices at LHC (in progress)

Interestingly, in large N theory there are no partons inside hadrons! [Polchinski-Strassler 02]

i.e. composite W, Z bosons are unlike vector-mesons in QCD!

CERN-Large Hadron Collider

Large Hadron Collider

Predominantly gluon-gluon, gluon-quark interactions

Summary

 Warped dimension provides new ways to break EW symmetry

e.g Composite Higgs, Higgsless, Emergent EWSB

- AdS/CFT => equivalent to 4D strong dynamics
- Models are consistent with electroweak precision tests (S,T parameters)
- Will be tested at LHC

LHC First Beam: September 10, 2008

LHC First Collisions: mid Nov. 2009 STAY TUNED!