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... is the quantum theory of the strong nuclear force.

Quantum ChromoDynamics...



• Responsible for binding quarks inside mesons and baryons:

Universality and Scaling in AdS/CFT with Flavour
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quark quark
gluon

• Quarks interact because they carry colour, which they 
exchange through gluons:

• Analogue of electric charge, but comes in  Nc = 3  types: 

{ q, q, q }
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• Strength of interaction depends on energy:

Universality and Scaling in AdS/CFT with Flavour
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Why is QCD hard?
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Strong coupling: 
No analytic and truly systematic methods!

Asymptotic freedom
The Nobel Prize in Physics 2004

D. Gross D. Politzer F. Wilczek

Why is QCD hard?
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QCD remains a challenge 
after 36 years

• Lattice is good for static properties, but 
not for real-time physics...

• ... and for a theorist it is a black box.

• A string reformulation might help.

• Topic of this talk, with focus on the QGP.
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Plan for the rest of the talk
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Remarks on 

More briefly on the vacuum: 
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O
(

ΛQCD

M

)
(2)

1
η

s
∼ 1

4π

η

s
∼ 1

4π
(3)

R4 = λ $4
s , λ = g2

YMNc (4)

Sstrong/Sfree = 3/4

Sstrong/Sfree " 0.8

J/ψ, Υ, ...

ω = |'k|

v < 1 (5)

Tfun(v) = (1− v2)1/4 Tfun (6)

η

s
=

1

4π
(7)

η

s
= (0− 5)× 1

4π
(8)

T/Mmes (9)

n∗
B

nB

Nf

√
λT 3

(10)

JB
µ = JEM

µ (11)

Nf/Nc (12)

GNTD7 ∼
λNf

Nc

(13)

1

• Obvious importance.

• All you need to know about string theory.

• Why and how should QCD and ST be related.

• Concluding thoughts.
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Focus on deconfined phase 
at                              .

• Greatest impact from string theory.          
• Experimentally studied in HIC.



 All you need to know about 
string theory



• String theory is a quantum theory of 
one-dimensional objects.
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• Characterised by two parameters:

• String theory is a quantum theory of 
one-dimensional objects.



• Different vibration modes behave as 
particles of different masses and spins:

M

M=0, Spin=2: Graviton!

BH



• Interested in strings propagating in curved space:

:  String does not split. 

Universality and Scaling in AdS/CFT with Flavour

This is a beautiful paper that I very much enjoyed reading. I will be happy to

recommend its publication provided the authors can clarify the precise meaning of

the operator on the r.h.s of eq. (4.6).

This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of x4. If it is to be understood as

an operator in the effective four-dimensional theory, then what is the gauge-invariant

five-dimensional operator it descends from?

An additional minor point is that, with the definition of χg just above eq. (1.1),

which is the usual one, I believe the numerical factor in the numerator of (1.1) must

be a 4, not a 2. Similarly, there is a factor of 1/2 missing on the right-most term of

eq. (2.6).
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E ∝ L (4)
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Jφ = 0 (10)

γ = 0.409552 (11)

γ = 0.408 ± 2% (12)

γ = 0.412 ± 1% (13)

ρ < ρc (14)
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:  String behaves as a point.

• Complicated theory, but simplifies dramatically if:

Classical supergravity.

Universality and Scaling in AdS/CFT with Flavour
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D-branes

Closed strings

• Also contains open strings... attached to D-branes.

Open strings



Why and how should QCD 
and string theory be related



Maldacena ‘97• First concrete example:
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The gauge/string duality

• Solvable string limit:
 Framework for non-perturbative gauge theory physics!
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Disclaimer I: Not proven, but lots of evidence.



Why have we not solved QCD?
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Disclaimer II: 
Dual of QCD is presently inaccessible.
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Tdiss ∼ 1.6 − 2.1Tc

〈JEM
µ JEM

ν 〉 ∼

ω2 = k2

There are two aspects of your paper that we are confused about. The first one

is that you seem to suggest that the reason that the energy cannot be computed

just from the tt-component of the branes’ stress-energy tensor is that the branes fall

through the horizon. The second is your claim that quantities for which the order-N2
c

contribution vanishes can be computed from the brane’s stress-energy tensor alone,

ignoring the backreaction.

To explain the reason we are confused, let us reproduce your own argument ex-

plicitly. The total action of the system is

S = SG[g] + ε SB[g, X] , (1)

where SG is the gravitational action, which depends on the metric g, and SB is the

brane’s action, which depends on the metric and the worldvolume fields, collectively

denoted by X. The brane action is suppressed by a small parameter ε ∼ Nf/Nc with

respect to the gravitational action. A solution to the equations of motion takes the

form of an expansion in powers of ε:

g = g0 + ε g1 + · · · , X = X0 + ε X1 + · · · (2)

where g0 is the solution in the absence of backreaction, g1 is the first correction, etc.

Now consider evaluating some physical quantity O. Interesting cases include the

action itself, O = S, the stress-energy tensor, O = Tµν , etc. In general any observable

receives contributions from both parts of the action, so to order ε we have

O[g, X] = OG[g0] +
δOG

δg

∣

∣

∣

∣

g0

ε g1 + ε OB|g0,X0
. (3)

1



Therefore:

• Certain quantitative observables (eg. T=0 spectrum) 
will require going beyond supergravity.

• However, certain predictions may be universal 
enough to apply in certain regimes. 



Some results from string theory:
The QGP
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Confinement...
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• This was realised in the hot, early Universe...



 ... and is the only fundamental phase transition that 
can be recreated in a lab like RHIC or LHC!

• This was realised in the hot, early Universe...



Good example:

Interpretation: 
QGP is weakly coupled
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Fig. 14. The energy density in QCD. The upper (lower) figure shows results from
a calculation with improved staggered [21] (Wilson [44]) fermions on lattices with
temporal extent Nτ = 4 (Nτ = 4, 6). The staggered fermion calculations have been
performed for a pseudo-scalar to vector meson mass ratio of mPS/mV = 0.7.

7 The Critical Temperature of the QCD Transition

As discussed in Section 3 the transition to the high temperature phase is continuous
and non-singular for a large range of quark masses. Nonetheless, for all quark masses
this transition proceeds rather rapidly in a small temperature interval. A definite
transition point thus can be identified, for instance through the location of peaks in
the susceptibilities of the Polyakov loop or the chiral condensate defined in Eq. 21.
For a given value of the quark mass one thus determines pseudo-critical couplings,
βpc(mq), on a lattice with temporal extent Nτ . An additional calculation of an
experimentally or phenomenologically known observable at zero temperature, e.g.

Karsch, hep-lat/0106019
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Lattice thermodynamics:
Edeconf ∼ 80%Eideal

ΛQCD ∼ Me−
#

λ(M)

Tdiss ∼ 1.6 − 2.1Tc

〈JEM
µ JEM

ν 〉 ∼

ω2 = k2

There are two aspects of your paper that we are confused about. The first one

is that you seem to suggest that the reason that the energy cannot be computed

just from the tt-component of the branes’ stress-energy tensor is that the branes fall

through the horizon. The second is your claim that quantities for which the order-N2
c

contribution vanishes can be computed from the brane’s stress-energy tensor alone,

ignoring the backreaction.

To explain the reason we are confused, let us reproduce your own argument ex-

plicitly. The total action of the system is

S = SG[g] + ε SB[g, X] , (1)

where SG is the gravitational action, which depends on the metric g, and SB is the

brane’s action, which depends on the metric and the worldvolume fields, collectively

denoted by X. The brane action is suppressed by a small parameter ε ∼ Nf/Nc with

respect to the gravitational action. A solution to the equations of motion takes the

form of an expansion in powers of ε:

g = g0 + ε g1 + · · · , X = X0 + ε X1 + · · · (2)

where g0 is the solution in the absence of backreaction, g1 is the first correction, etc.

Now consider evaluating some physical quantity O. Interesting cases include the

action itself, O = S, the stress-energy tensor, O = Tµν , etc. In general any observable
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where g0 is the solution in the absence of backreaction, g1 is the first correction, etc.

Now consider evaluating some physical quantity O. Interesting cases include the

action itself, O = S, the stress-energy tensor, O = Tµν , etc. In general any observable

1



Indeed, thermodynamics can be misleading...

Gubser, Klebanov & Peet
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ω2 = k2

There are two aspects of your paper that we are confused about. The first one

is that you seem to suggest that the reason that the energy cannot be computed

just from the tt-component of the branes’ stress-energy tensor is that the branes fall

through the horizon. The second is your claim that quantities for which the order-N2
c

contribution vanishes can be computed from the brane’s stress-energy tensor alone,

ignoring the backreaction.

To explain the reason we are confused, let us reproduce your own argument ex-

plicitly. The total action of the system is

S = SG[g] + ε SB[g, X] , (1)

where SG is the gravitational action, which depends on the metric g, and SB is the

brane’s action, which depends on the metric and the worldvolume fields, collectively

denoted by X. The brane action is suppressed by a small parameter ε ∼ Nf/Nc with

respect to the gravitational action. A solution to the equations of motion takes the

form of an expansion in powers of ε:

g = g0 + ε g1 + · · · , X = X0 + ε X1 + · · · (2)

where g0 is the solution in the absence of backreaction, g1 is the first correction, etc.

Now consider evaluating some physical quantity O. Interesting cases include the

action itself, O = S, the stress-energy tensor, O = Tµν , etc. In general any observable
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• For example, for N=4 SYM:

• And yet, in the limit                              one finds:Nc →∞ , λ→∞ (1)
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• Same for all non-Abelian plasmas with gravity dual in 
the limit                              :  

- Theories in different dimensions. 
- With or without fundamental matter.
- With or without chemical potential, etc.
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• Similar statics, radically different dynamics.



• Suggests that                     is a “universal” property of 
strongly coupled non-Abelian plasmas, and hence...     
a prediction:

η/s = 1/4π
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s
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λ2 log λ

Estrong coupling ∼ 75%Eideal

ΛQCD ∼ Me−
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λ(M)

Tdiss ∼ 1.6 − 2.1Tc

〈JEM
µ JEM

ν 〉 ∼

ω2 = k2

There are two aspects of your paper that we are confused about. The first one

is that you seem to suggest that the reason that the energy cannot be computed

just from the tt-component of the branes’ stress-energy tensor is that the branes fall

through the horizon. The second is your claim that quantities for which the order-N2
c

contribution vanishes can be computed from the brane’s stress-energy tensor alone,

ignoring the backreaction.

To explain the reason we are confused, let us reproduce your own argument ex-

plicitly. The total action of the system is

S = SG[g] + ε SB[g, X] , (1)

where SG is the gravitational action, which depends on the metric g, and SB is the

brane’s action, which depends on the metric and the worldvolume fields, collectively

denoted by X. The brane action is suppressed by a small parameter ε ∼ Nf/Nc with

respect to the gravitational action. A solution to the equations of motion takes the

form of an expansion in powers of ε:

g = g0 + ε g1 + · · · , X = X0 + ε X1 + · · · (2)

where g0 is the solution in the absence of backreaction, g1 is the first correction, etc.
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ω2 = k2

There are two aspects of your paper that we are confused about. The first one

is that you seem to suggest that the reason that the energy cannot be computed

just from the tt-component of the branes’ stress-energy tensor is that the branes fall

through the horizon. The second is your claim that quantities for which the order-N2
c

contribution vanishes can be computed from the brane’s stress-energy tensor alone,

ignoring the backreaction.

To explain the reason we are confused, let us reproduce your own argument ex-

plicitly. The total action of the system is

S = SG[g] + ε SB[g, X] , (1)

where SG is the gravitational action, which depends on the metric g, and SB is the

brane’s action, which depends on the metric and the worldvolume fields, collectively

denoted by X. The brane action is suppressed by a small parameter ε ∼ Nf/Nc with

respect to the gravitational action. A solution to the equations of motion takes the

form of an expansion in powers of ε:

g = g0 + ε g1 + · · · , X = X0 + ε X1 + · · · (2)

where g0 is the solution in the absence of backreaction, g1 is the first correction, etc.

1

If QCD just above deconfinement is 
strongly coupled, then                      .

• We cannot compute this, but we can go to RHIC:



Animation by Jeffery Mitchell (Brookhaven National Laboratory). Simulation by the UrQMD Collaboration

                For liquid He                       .
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RHIC Scientists Serve Up “Perfect” 
Liquid 
New state of matter more remarkable than predicted -- 
raising many new questions 

April 18, 2005 

TAMPA, FL -- The four detector groups conducting 
research at the Relativistic Heavy Ion Collider (RHIC) -- a 
giant atom “smasher” located at the U.S. Department of 
Energy’s Brookhaven National Laboratory -- say they’ve 
created a new state of hot, dense matter out of the quarks 
and gluons that are the basic particles of atomic nuclei, but 
it is a state quite different and even more remarkable than 
had been predicted. In peer-reviewed papers summarizing 
the first three years of RHIC findings, the scientists say that 
instead of behaving like a gas of free quarks and gluons, as 
was expected, the matter created in RHIC’s heavy ion 
collisions appears to be more like a liquid.  

                       
    Secretary of Energy  
     Samuel Bodman         Dr. Raymond L. Orbach 

Also of great interest to many following progress at RHIC is the emerging 
connection between the collider’s results and calculations using the methods 
of string theory, an approach that attempts to explain fundamental 
properties of the universe using 10 dimensions instead of the usual three 
spatial dimensions plus time.  

 “The possibility of a connection between string theory and RHIC collisions 
is unexpected and exhilarating,” Dr. Orbach said. “String theory seeks to 
unify the two great intellectual achievements of twentieth-century physics, 
general relativity and quantum mechanics, and it may well have a profound 
impact on the physics of the twenty-first century.”  

 
 
 

      

 



Why is the ratio universal?

BH
Deconfined plasma

Witten ‘98
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There are two aspects of your paper that we are confused about. The first one

is that you seem to suggest that the reason that the energy cannot be computed

just from the tt-component of the branes’ stress-energy tensor is that the branes fall

through the horizon. The second is your claim that quantities for which the order-N2
c

contribution vanishes can be computed from the brane’s stress-energy tensor alone,

ignoring the backreaction.

To explain the reason we are confused, let us reproduce your own argument ex-
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Viscosity: 

gauge/gravity duality classical GR theorem



Combine with another universal property
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Karch & Randall ’01
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Glueballs

Universality and Scaling in AdS/CFT with Flavour

This is a beautiful paper that I very much enjoyed reading. I will be happy to

recommend its publication provided the authors can clarify the precise meaning of

the operator on the r.h.s of eq. (4.6).

This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of 	4. If it is to be understood as

an operator in the effective four-dimensional theory, then what is the gauge-invariant

five-dimensional operator it descends from?

An additional minor point is that, with the definition of χg just above eq. (1.1),

which is the usual one, I believe the numerical factor in the numerator of (1.1) must

be a 4, not a 2. Similarly, there is a factor of 1/2 missing on the right-most term of

eq. (2.6).
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Universality and Scaling in AdS/CFT with Flavour

This is a beautiful paper that I very much enjoyed reading. I will be happy to

recommend its publication provided the authors can clarify the precise meaning of

the operator on the r.h.s of eq. (4.6).

This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of 	4. If it is to be understood as

an operator in the effective four-dimensional theory, then what is the gauge-invariant

five-dimensional operator it descends from?

An additional minor point is that, with the definition of χg just above eq. (1.1),

which is the usual one, I believe the numerical factor in the numerator of (1.1) must

be a 4, not a 2. Similarly, there is a factor of 1/2 missing on the right-most term of

eq. (2.6).
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Universality and Scaling in AdS/CFT with Flavour

This is a beautiful paper that I very much enjoyed reading. I will be happy to

recommend its publication provided the authors can clarify the precise meaning of

the operator on the r.h.s of eq. (4.6).

This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of x4. If it is to be understood as

an operator in the effective four-dimensional theory, then what is the gauge-invariant

five-dimensional operator it descends from?

An additional minor point is that, with the definition of χg just above eq. (1.1),

which is the usual one, I believe the numerical factor in the numerator of (1.1) must

be a 4, not a 2. Similarly, there is a factor of 1/2 missing on the right-most term of

eq. (2.6).
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Limiting velocity for mesons
D.M., Myers & Thomson ‘07

Ejaz, Faulkner, Liu, Rajagopal & Wiedemann ‘07

Figure 1: The two possible topologies for Dq-brane probes in the background of black Dp-branes.

From the viewpoint of the holographic description, the basic physics behind this transition

is easily understood. The asymptotic distance between the Dq-branes and the black hole is

proportional to the quark mass, whereas the size of the black hole horizon is proportional

to the temperature. Thus for sufficiently small T/Mq the Dq-branes are deformed by the

gravitational attraction of the black hole, but remain entirely outside the horizon in what we

call a ‘Minkowski’ embedding (see fig. 1). However, above a critical temperature Tfun, the

gravitational force overcomes the tension of the branes and these are pulled into the horzion.

We refer to such configurations as ‘black hole’ embeddings.

In the dual field theory, this phase transition is exemplified by discontinuities in physical

quantities such as, for example, the quark condensate or the contribution of the fundamental

matter to the energy density. However, the most striking feature of this phase transition

is found in the spectrum of physical excitations of the fundamental matter. In the low-

temperature, Minkowski phase the spectrum is gapped and contains a discrete set of deeply

bound mesons (i.e., quark-antiquark bound states) with masses of order Mmeson ∼ Mq/
√

λ.

These mesons are dual to excitations supported on the probe branes (see, e.g., [16, 17, 19]) and

are absolutely stable in the large-Nc, strong coupling limit under consideration. In addition to

the mesons, the Minkowski-phase spectrum also contains well defined, quark-like excitations

described by strings stretching between the tip of the branes and the horizon. These have

masses of order Mq and are therefore parametrically heavier than the mesons.

In the high-temperature, black hole phase stable mesons cease to exist. Rather one finds

a continuous and gapless spectrum of excitations [20, 21]. Hence at the first order phase

transition at Tfun the mesons dissociate or ‘ionise’, and the electric charge is thus ‘liberated’.

However, no well defined, quasi-particle notion of an individual quark exists in this phase,

since a string stretching between any point on the branes and the horizon will quickly fall

through the horizon. In the gauge theory this corresponds to the fact that any localised quark

charge will quickly spread across the entire plasma, thus loosing its identity.

In this paper we will study photon production in the black-hole phase. We will see that

– 3 –

 Limiting velocity
= 

Local speed of light at the tip



Fig. 32. Dispersion relation ω(k) for mesons on Minkowski D7-brane embeddings
with m = 1.32.

We now turn to mesons moving through the plasma, that is to modes with
k != 0. The dispersion relation for these modes is shown in fig. 32 for a repre-
sentative value of m. For non-relativistic motion (small three-momenta), we
expect that the dispersion relation takes the form

ω(k) " M0 +
k2

2Mkin
, (337)

where M0 = M0(T ) is the rest mass calculated above and Mkin = Mkin(T ) is
the effective kinetic mass for a moving meson. Although Mkin(T ) is not the
same as M0(T ), for low temperatures the difference between the two quantities
is expected to be small. For example, fitting the small-k results for ω at T/M̄ =
0.5 (i.e. m = 2) yields

ω

M̄
= 6.084 + 0.076

k2

M̄2
+ · · · . (338)

Hence in this case, we find M0/M̄ " 6.084 and Mkin/M̄ " 6.579. Recall
that at T = 0, we would have M0 = Mkin = Mgap = 2πM̄ " 6.283M̄ and
so both masses have shifted by less than 5%. Note that while the rest mass
has decreased, the kinetic mass has increased. The latter is perhaps counter-
intuitive as it indicates it is actually easier to set the meson in motion through
the plasma than in vacuum. From a gravity perspective, it is perhaps less
surprising as the Minkowski branes are bending towards the black hole horizon
and so these fluctuations experience a greater redshift than in the pure AdS5×
S5 background.

Examining the regime of large three-momenta, we find that ω grows linearly
with k. Naively, one might expect that the constant of proportionality should
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Peak in photon spectrum
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Meson with                 has same 
quantum numbers as a photon

Tdiss ∼ 1.6 − 2.1Tc

〈JEM

µ JEM

ν 〉 ∼

ω2 = k2

There are two aspects of your paper that we are confused about. The first one

is that you seem to suggest that the reason that the energy cannot be computed

just from the tt-component of the branes’ stress-energy tensor is that the branes fall

through the horizon. The second is your claim that quantities for which the order-N2
c

contribution vanishes can be computed from the brane’s stress-energy tensor alone,

ignoring the backreaction.

To explain the reason we are confused, let us reproduce your own argument ex-

plicitly. The total action of the system is

S = SG[g] + ε SB[g, X] , (1)

where SG is the gravitational action, which depends on the metric g, and SB is the

brane’s action, which depends on the metric and the worldvolume fields, collectively

denoted by X. The brane action is suppressed by a small parameter ε ∼ Nf/Nc with

respect to the gravitational action. A solution to the equations of motion takes the

form of an expansion in powers of ε:

g = g0 + ε g1 + · · · , X = X0 + ε X1 + · · · (2)

where g0 is the solution in the absence of backreaction, g1 is the first correction, etc.

Now consider evaluating some physical quantity O. Interesting cases include the

action itself, O = S, the stress-energy tensor, O = Tµν , etc. In general any observable

receives contributions from both parts of the action, so to order ε we have

O[g, X] = OG[g0] +
δOG

δg

∣

∣

∣

∣

g0

ε g1 + ε OB|g0,X0
. (3)

The third term is the direct brane contribution, whereas the second one is the con-

tribution from the backreaction. This contribution would seem to vanish if and only

1

2

γ Meson

FIG.2:Decayofavectormesonintoandon-shellphoton.

null,andsothemesonpossessesthesamequantumnum-
bersasaphoton[9].Suchamesoncanthendecayinto
anon-shellphoton[10],asdepictedinfig.2.Thispro-
cesscontributesaresonancepeak,atanenergyωpeak,to
thein-mediumspectralfunctionoftwoelectromagnetic
currents,χµν(ω,k)∼〈Jµ(ω,k)Jν(−ω,−k)〉,evaluatedat
null-momentumω=k.Thisinturnproducesapeakin
thespectrumofthermalphotonsemittedbytheplasma,
dNγ/dω∼e−ω/Tχµ

µ(ω,T).Thewidthofthispeakis
thewidthofthemesonintheplasma.Infig.3wehave
illustratedthiseffectfortheN=4SYMplasmacoupled
toonemasslessquarkandoneheavyquark.Theresults
arevalidatstrongcouplingandlargeNc,sincetheywere
obtainedbymeansofthegravitydual[8].Thespectral
functionforthemasslessquarkisstructure-less,whereas
thatfortheheavyquarkexhibitsaresonancepeak–see
[8]forfurtherdetails.
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FIG.3:SpectralfunctionsfortheN=4SYMplasmacou-
pledtoamasslessquark(top,redcurve)andaheavyquark
(bottom,bluecurve),atlargeNcandstrongcoupling.

3.Auniversalpropertyofplasmaswithagravity
dual.ThegravitydualofQCDispresentlyunknown.
Whenstudyingstrongly-coupledplasmaswithagrav-
itydual,itisthereforeimportanttofocusonproperties
thatapplytoasbroadaclassofplasmasaspossible,
sincethesemayalsoapplytoQCD.Inthissectionwe
willshowthatthetwoassumptionsaboveaboutheavy
mesonsinaQGParetrueinallstronglycoupled,large-
Ncplasmaswithagravitydual,becausetheyfollowfrom
twouniversalpropertiesoftheduality:Thefactthatthe
deconfinedphaseisdescribedbyabackgroundwitha
blackhole(BH)[11],andthefactthat,inthelarge-Nc

limit,afinitenumberofflavoursNfisdescribedbyNf

D-braneprobesinthisbackground[12].
Inthepresenceoftheblackhole,therearetwopossible

phasesfortheD-branes,separatedbyauniversalfirst-
orderphasetransition[13,14].Geometrically,thesetwo
phasesaredistinguishedbywhetherornottheD-brane
tensioncancompensatefortheblackholegravitational
attraction(seefig.4).Inthefirstcasethebraneslie

FIG.4:PossibleD-braneembeddingsinaBHbackground.

completelyoutsidethehorizonina‘Minkowskiembed-
ding’.Inthesecondcasetheyfallthroughthehorizon
ina‘BHembedding’.Fromthegaugetheoryviewpoint,
thisphasetransitioncorrespondstothedissociationof
heavymesons[13,18].IntheMinkowskiphasestable
mesonsexist,andtheirspectrumisdiscreteandgapped.
Themesonmassinthisphaseincreasesastheseparation
betweenthebranesandtheblackholeincreases[19].By
contrast,intheblackholephasenomesonboundstates
exist.Recallingthattheradiusoftheblackholeispro-
portionaltotheplasmatemperature,weseethatifame-
sonissufficientlyheavycomparedtothetemperatrure,
thenthismesonremainsboundintheplasmaandisde-
scribedbyaMinkowskibrane.

Theexistenceofasubluminallimitingvelocityfor
mesonsisobviousfromthegeometricpictureabove:It
isjustthelocalspeedoflightatthetipofthebranes
[7].Indeed,thewavefunctionofamesonissupported
ontheD-branes.Thelargertheenergyofthemeson,
themoreitisattractedbytheblackholeandthemore
itswave-functionisconcentratedatthetipofthebranes
(seefig.4).Inthelimitk→∞thevelocityofthisme-
sonapproachesthelocalspeedoflightatthetipofthe
branes.BecauseoftheredshiftcausedbytheBH,this
limitingvelocityislowerthanthespeedoflightatthe
boundary,wherethegaugetheoryresides.Inthegauge
theorythistranslatesintothestatementthatvlimislower
thanthespeedoflightinthevacuum[7].Thiseffectis
clearlyillustratedinfig.1.
4.HeavyIonCollisions.Ouranalysissofarapplies
toaninfinitely-extendedplasmaatconstanttempera-
ture.Acrucialquestioniswhetherapeakinthephoton
spectrumcouldbeobservedinaheavyioncollisionex-
periment.Naturalheavyvectormesonstoconsiderare
theJ/ψandtheΥ,sincetheseareexpectedtosurvive
deconfinement.Wewishtocomparethenumberofpho-
tonscomingfromthesemesonstothenumberofpho-
tonscomingfromothersources.Accuratelycalculating
themesoncontributionwouldrequireaprecisetheoret-
icalunderstandingofthedynamicsofthesemesonsin
theQGP,whichatpresentisnotavailable.Ourgoalwill
thereforebetoestimatetheorderofmagnitudeofthis
effectwithasimplemodel.

Following[21],wemodelthefireballasanexpand-
ingcylinderwithvolumeV(t)=π(z0+vzt)(r0+
a⊥t2/2)2.Thisleadstothetemperatureevolution

2

γMeson

FIG. 2: Decay of a vector meson into and on-shell photon.

null, and so the meson possesses the same quantum num-
bers as a photon [9]. Such a meson can then decay into
an on-shell photon [10], as depicted in fig. 2. This pro-
cess contributes a resonance peak, at an energy ωpeak, to
the in-medium spectral function of two electromagnetic
currents, χµν(ω, k) ∼ 〈Jµ(ω, k)Jν(−ω,−k)〉, evaluated at
null-momentum ω = k. This in turn produces a peak in
the spectrum of thermal photons emitted by the plasma,
dNγ/dω ∼ e−ω/T χµ

µ(ω, T ). The width of this peak is
the width of the meson in the plasma. In fig. 3 we have
illustrated this effect for the N = 4 SYM plasma coupled
to one massless quark and one heavy quark. The results
are valid at strong coupling and large Nc, since they were
obtained by means of the gravity dual [8]. The spectral
function for the massless quark is structure-less, whereas
that for the heavy quark exhibits a resonance peak – see
[8] for further details.
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FIG. 3: Spectral functions for the N = 4 SYM plasma cou-
pled to a massless quark (top, red curve) and a heavy quark
(bottom, blue curve), at large Nc and strong coupling.

3. A universal property of plasmas with a gravity
dual. The gravity dual of QCD is presently unknown.
When studying strongly-coupled plasmas with a grav-
ity dual, it is therefore important to focus on properties
that apply to as broad a class of plasmas as possible,
since these may also apply to QCD. In this section we
will show that the two assumptions above about heavy
mesons in a QGP are true in all strongly coupled, large-
Nc plasmas with a gravity dual, because they follow from
two universal properties of the duality: The fact that the
deconfined phase is described by a background with a
black hole (BH) [11], and the fact that, in the large-Nc

limit, a finite number of flavours Nf is described by Nf

D-brane probes in this background [12].
In the presence of the black hole, there are two possible

phases for the D-branes, separated by a universal first-
order phase transition [13, 14]. Geometrically, these two
phases are distinguished by whether or not the D-brane
tension can compensate for the black hole gravitational
attraction (see fig. 4). In the first case the branes lie

FIG. 4: Possible D-brane embeddings in a BH background.

completely outside the horizon in a ‘Minkowski embed-
ding’. In the second case they fall through the horizon
in a ‘BH embedding’. From the gauge theory viewpoint,
this phase transition corresponds to the dissociation of
heavy mesons [13, 18]. In the Minkowski phase stable
mesons exist, and their spectrum is discrete and gapped.
The meson mass in this phase increases as the separation
between the branes and the black hole increases [19]. By
contrast, in the black hole phase no meson bound states
exist. Recalling that the radius of the black hole is pro-
portional to the plasma temperature, we see that if a me-
son is sufficiently heavy compared to the temperatrure,
then this meson remains bound in the plasma and is de-
scribed by a Minkowski brane.

The existence of a subluminal limiting velocity for
mesons is obvious from the geometric picture above: It
is just the local speed of light at the tip of the branes
[7]. Indeed, the wave function of a meson is supported
on the D-branes. The larger the energy of the meson,
the more it is attracted by the black hole and the more
its wave-function is concentrated at the tip of the branes
(see fig. 4). In the limit k → ∞ the velocity of this me-
son approaches the local speed of light at the tip of the
branes. Because of the redshift caused by the BH, this
limiting velocity is lower than the speed of light at the
boundary, where the gauge theory resides. In the gauge
theory this translates into the statement that vlim is lower
than the speed of light in the vacuum [7]. This effect is
clearly illustrated in fig. 1.
4. Heavy Ion Collisions. Our analysis so far applies
to an infinitely-extended plasma at constant tempera-
ture. A crucial question is whether a peak in the photon
spectrum could be observed in a heavy ion collision ex-
periment. Natural heavy vector mesons to consider are
the J/ψ and the Υ, since these are expected to survive
deconfinement. We wish to compare the number of pho-
tons coming from these mesons to the number of pho-
tons coming from other sources. Accurately calculating
the meson contribution would require a precise theoret-
ical understanding of the dynamics of these mesons in
the QGP, which at present is not available. Our goal will
therefore be to estimate the order of magnitude of this
effect with a simple model.

Following [21], we model the fireball as an expand-
ing cylinder with volume V (t) = π(z0 + vzt)(r0 +
a⊥t2/2)2. This leads to the temperature evolution

Produces resonance peak in photon 2-point function and 
hence in thermal photon spectrum:

Tdiss ∼ 1.6 − 2.1Tc

〈JEM

µ JEM

ν 〉 ∼

There are two aspects of your paper that we are confused about. The first one

is that you seem to suggest that the reason that the energy cannot be computed

just from the tt-component of the branes’ stress-energy tensor is that the branes fall

through the horizon. The second is your claim that quantities for which the order-N2
c

contribution vanishes can be computed from the brane’s stress-energy tensor alone,

ignoring the backreaction.

To explain the reason we are confused, let us reproduce your own argument ex-

plicitly. The total action of the system is

S = SG[g] + ε SB[g, X] , (1)

where SG is the gravitational action, which depends on the metric g, and SB is the

brane’s action, which depends on the metric and the worldvolume fields, collectively

denoted by X. The brane action is suppressed by a small parameter ε ∼ Nf/Nc with

respect to the gravitational action. A solution to the equations of motion takes the

form of an expansion in powers of ε:

g = g0 + ε g1 + · · · , X = X0 + ε X1 + · · · (2)

where g0 is the solution in the absence of backreaction, g1 is the first correction, etc.

Now consider evaluating some physical quantity O. Interesting cases include the

action itself, O = S, the stress-energy tensor, O = Tµν , etc. In general any observable

receives contributions from both parts of the action, so to order ε we have

O[g, X] = OG[g0] +
δOG

δg

∣

∣

∣

∣

g0

ε g1 + ε OB|g0,X0
. (3)

The third term is the direct brane contribution, whereas the second one is the con-

tribution from the backreaction. This contribution would seem to vanish if and only

if
δOG

δg

∣

∣

∣

∣

g0

= 0 . (4)

This is true for the action itself, ie. in the case O = S, because g0 is an extremum of

the gravitational action, but it is not true for the stress-energy tensor.

1
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Figure 1: Ultra-relativistic quantum molecular dynamics simulation of a gold-gold collision [6],
with view before (left) and after (right). Species are probably: protons (red), neutrons (white), meson
(green), and excited baryons (blue).

• The inelastic gold-on-gold cross-section may be estimated roughly as σtot =
4πR2: this is just geometric overlap.

Exercise 1 (Total cross inelastic cross section) Compute σtot in barns. About how many gold-
gold collisions has RHIC produced?

Answer

• RHIC’s design luminosity is 2× 1026 cm−2s−1. Integrated luminosity to date is
in the ballpark of 4 nb−1.

γ

• This is interesting because QGP is optically thin                     
→ Thermal photons carry valuable information.

Peak in photon spectrum



• Eg. a simple model for J/Ψ at LHC energies yields:
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Thermal background 
from light quarks

 J/Ψ signal

Peak in photon spectrum

• Location of the peak between 3-5 GeV.

• Quadratically sensitive to        cross-section                     
-- not observable at RHIC.

Nc D4

Nf D8

Nf D̄8

SU(Nf)L × SU(Nf)R → SU(Nf)V (1)

−→ SU(Nf)V (2)

Check: Spectrum contains N2

f
− 1 massless pions.

ΛQCD ∼ Mglueball ∼ MKK ∼ 1/R (3)

〈ψ̄ψ〉 ∼ Mmeson ∼ 1/L (4)

Mq = 0 (5)

Tfun (6)

O ∼ ψ†
L P ei

R

A ψR (7)

〈JEM

µ JEM

µ 〉 (8)

cc̄ (9)

1
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Figure 130: Direct-γ spectra in 0-10% central (left) and 60-90% peripheral (right) Pb-Pb

at
√
s
NN
= 5.5 TeV, with the thermal (QGP and HRG) and prompt (pQCD) contributions

differentiated.

LHC simulations shown in comparison we assume a final charged hadron multiplicity near

the upper end of the predicted range:
dNch
dy
(b=y=0)=2350 (680 at RHIC). Correspondingly

we increase the initial peak entropy density in central Au+Au collisions from s0=351 fm
−3

at τ0=0.2 fm/c for RHIC to s0=2438 fm−3 at τ0 = 0.1 fm/c for LHC.

1. Thermal photon spectra: Figure 131 shows the thermal photon pT -spectra (angle-

integrated) for RHIC and LHC. At both collision energies the total spectrum is dominated

by quark matter once pT exceeds a few hundred MeV. Its inverse slope (“effective tempera-

ture”) in the range 1.5< pT <3GeV/c increases by almost 50%, from 303MeV at RHIC to

442MeV at LHC, reflecting the higher initial temperature and significantly increased radial

flow (visible in the HM contribution) at LHC.

2. Thermal photon elliptic flow: Figure 132 shows the differential elliptic flow of thermal

photons at RHIC and LHC, with quark matter (QM) and hadronic matter (HM) radiation

shown separately for comparison. The decrease at high pT of the QM and total photon

v2 reflects the dominance of QM radiation at high pT (emission from the early, hot stage

when radial and elliptic flow are still small). At fixed pT , the photon elliptic flow from QM

radiation is larger at LHC than at RHIC since the LHC fireballs start hotter and fluid cells

with a given temperature thus flow more rapidly. At low pT , hadronic radiation dominates,

and since it flows more rapidly at LHC than at RHIC the corresponding photon elliptic is

significantly larger at LHC than RHIC. This is different from hadrons whose elliptic flow at

low pT decreases from RHIC to LHC, reflecting a redistribution of the momentum anisotropy

to higher pT by increased radial flow [361]. For photons, the elliptic flow is not yet saturated

at RHIC, and at low pT it keeps increasing towards LHC at a rate that overwhelms the loss of

momentum anisotropy to the high-pT domain via radial flow. Contrary to pion v2 [361], the

• Signal is also comparable (or larger) than pQCD background: 
Arleo, d’Enterria and Peressounko ‘07

Peak in photon spectrum



Quark energy loss through drag
RHIC and string theory, Gubser, PiTP 2006 29 3.3 Don’t bring out the champagne just yet
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Figure 13: In blue: the trailing string of an external quark, following [21, 22]. The dashed line
shows classical propagation of a graviton from the string to the boundary, where its behavior can be
translated into the stress-energy tensor 〈Tmn〉 of the boundary gauge theory [23].

4. Jet-quenching and trailing strings
An analog of jet-quenching in AdS/CFT should involve a colored probe that we drag
through the QGP, preferably at relativistic speeds. Readiest to hand are external
quarks: strings with one end on the boundary. See figure 13.
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Energy loss and the gauge-string duality 43

The components of the energy flux can be treated in a similar manner: we define

Si = −
√

1− v2

(πT )4
√

λ
〈TK

0i 〉 (172)

and decompose #S into

#S = #SCoulomb + #SUV + #SIR + #Sres . (173)

The Coulombic expression for the Poynting vector is given by the O(K) terms in
(160) and (161). The small momentum expressions are given by

S1 IR =− 1
2π

i(1 + v2)K1 + vK2 − 2v3K2
1

K2 − 3v2K2
1 − ivK2K1

+
1
2π

i(1 + v2)K1 + vK2 − 2v3K2
1

K2 − 3v2K2
1 − ivK2K1 + µ2

IR

+
2v

π

1 + iK1/4v

K2 − 4ivK1
− 2v

π

1 + iK1/4v

K2 − 4ivK1 + µ2
IR

(174)

S⊥ IR =− 1
2π

i(1 + v2)K⊥ + b2K1K⊥)
K2 − 3v2K2

1 − ivK2K1
+

1
2π

iK⊥
K2 − 4ivK1

+ (regulators) (175)

where we have set µIR = 1 and by “(regulators)” we mean terms containing the
regulator µIR, analogous to those in (168) and (174). The large momentum ex-
pressions are given by applying (169) to (160) and (161). As was the case for the
energy density, we used µUV = 1. The real space results for the Poynting vector for
v2 = 3/4 are shown in figure 6.
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Fig. 6. (Color online.) Contour plot of the magnitude of the Poynting vector, with the Coulombic
contribution subtracted.52 The magnitude of the Poynting vector goes from red (large) to white
(zero) while the arrows show its direction. The dashed green line shows the presumed location of
the Mach angle, and the blue line shows the location of the laminar wake—as dictated by its large
distance asymptotics.
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FIG. 3: Left—Position space plot of |x|∆E(x)/(T 3
√

λ) for v = 1/4. Right—Position space plot of |x|∆S(x)/(T 3
√

λ) for
v = 1/4. The flow lines on the surface are the flow lines of the energy flux ∆S(x). There is a surplus of energy in front of the
quark and a deficit behind it. Correspondingly, trailing the quark there is a stream of energy flux which moves in the same
direction as the quark. Note the absence of structure in ∆E(x) for distances |x|" 1/(πT ).

FIG. 4: Left—Plot of |x|∆E(x)/(T 3
√

λ) for v = 3/4. Right—Plot of |x|∆S(x)/(T 3
√

λ) for v = 3/4. The flow lines on the
surface are the flow lines of ∆S(x). There is a surplus of energy in front of the quark and a deficit behind it. Correspondingly,
trailing the quark there is a narrow stream of energy flux which moves in the same direction as the quark. A Mach cone, with
opening half angle θM ≈ 50◦ is clearly visible in both the energy density and the energy flux. Near the Mach cone, the bulk of
the energy flux flow is orthogonal to the wavefront.
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RHIC and string theory, Gubser, PiTP 2006 6 2.1 The experimental setup

Figure 1: Ultra-relativistic quantum molecular dynamics simulation of a gold-gold collision [6],
with view before (left) and after (right). Species are probably: protons (red), neutrons (white), meson
(green), and excited baryons (blue).

• The inelastic gold-on-gold cross-section may be estimated roughly as σtot =
4πR2: this is just geometric overlap.

Exercise 1 (Total cross inelastic cross section) Compute σtot in barns. About how many gold-
gold collisions has RHIC produced?

Answer

• RHIC’s design luminosity is 2× 1026 cm−2s−1. Integrated luminosity to date is
in the ballpark of 4 nb−1.
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one of the most important ones being that it does not exhibit confinement. In this section

we will study the simplest example of a confining theory with a gravity dual, as well as the
gravitational analogue of the confinement/deconfienement phase transition.

5.1 A confining theory from D4-branes

One simple way to construct a confining gauge theory with a gravity dual, due to Witten
[24], is to start with Nc D4-branes, instead of with Nc D3-branes as in section 3. The gauge

theory on the D4-branes is a maximally supersymmetric, SU(Nc) SYM theory in five dimen-
sions whose field content consists, in addition to the gluons, of scalars and fermions in the

adjoint representation. In order to obtain a four-dimenional theory, consider compactifying
one spacelike direction of the D4-branes on a circle S1

L of length L. Since we would like to

break supersymmety, we impose antiperiodic boundary conditions for the fermions around this
circle. This projects out their zero-mode, so from the four-dimensional viewpoint they acquire
a tree-level mass M ∼ 1/L. Through quantum effects, a mass is also generated for the scalars.

The only degrees of freedom that remain massless in four dimensions are the (zero modes of)
the gauge fields, since a mass for these is forbidden by gauge invariance. Thus at energies

E " M the theory reduces to pure SU(Nc) Yang-Mills, which we expect to confine at some
dynamically generated scale ΛQCD. We also expect that a confinement/deconfinement phase
transition should occur at a temperature Tdec ∼ ΛQCD.

Before we proceed to construct the gravitational description of the D4-brane theory above,
let us note that we would like to study this theory in the regime in which ΛQCD " M , so that

dynamics we are interested in is not contaminated by the presence of additional fields at the
scale M . We will see in this section that, unfortunately, this limit cannot be described in the

dual string theory using solely supergravity. We will discuss the implications of this in the last
section.

The construction of the gravity solution dual to the theory on the D4-branes is easily

constructed along the lines of previous sections. One starts with the solution for near-extremal
D4-branes and takes an appropriate decoupling limit. The result is the ten-dimensional metric

ds2 =
( r

R

)3/2
(

−fdt2 + dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
+ R3/2r1/2ds2

(

S4
)

, (36)

where

f(r) = 1 − r3
0

r3
. (37)

The last term on the right-hand side is the round metric on a unit four-sphere. The coordinates
on this sphere, together with the radial coordinate r, span the five-dimensional space transverse

to the D4-branes. The coordinates t, x(3), y span the five-dimensional worldvolume of the D4-
branes and are identified with the gauge theory coordinates. The coordinate y is periodically

identified with period L, i.e., y ∼ y + L.
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Unlike the metric on AdS5 × S5, the metric (36) does not factorise into a direct product

of some spacetime times a sphere. Nevertheless, the last term in (36) will play no role in the
following and so we will effectively work with the six-dimensional metric

ds2 =
( r

R

)3/2
(

−fdt2 + dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
. (38)

In addition to the metric (36), the solution sourced by D4-branes possesses a non-trivial dilaton
field given by

eΦ =
( r

R

)3/4
. (39)

Physically, this is one of the most important differences between the D4-brane solution and the
analogous D3-brane solution, for which the dilaton is constant. Recalling that the dilaton is

related to the SYM coupling constant gYM and that r is related to the energy scale in the gauge
theory, we realise that the running dilaton above merely reflects a running coupling constant

in the gauge theory, namely a non-trivial RG flow; another reflection of this running is the
fact that the scalar curvature of the metric (38) is not constant. Thus, as promised, we have
constructed the first example of a non-AdS dual of a non-conformal gauge theory. Note that

the dilaton diverges as r → ∞, i.e., in the ultraviolet. This corresponds to the fact that the
five-dimensional dual gauge theory on the D4-branes is not renormalisable and hence a UV

completion is needed. We will not need the details of this completion here. Suffice it to say
that it is provided by the (2,0) superconformal theory on Nc M5-branes, consistently with the

fact the D4-brane solution lifts to the eleven-dimenional solution sourced by the M5-branes.
The metric (36) possesses a regular, finite-area horizon at r = r0. In order to determine

its Hawking temperature T , which we must identify with the gauge theory temperature, we

proceed as in section 4. We first continue to Euclidean signature via t → itE with the result

ds2
E

=
( r

R

)3/2
(

fdt2
E

+ dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
. (40)

Then we demand regularity at r = r0, which forces us to compactify tE on a circle S1
β of length

β = 1/T , i.e., tE ∼ tE + β. A simple calculation shows that

r0 =

(

4π

3

)2 R3

β2
. (41)
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one of the most important ones being that it does not exhibit confinement. In this section

we will study the simplest example of a confining theory with a gravity dual, as well as the
gravitational analogue of the confinement/deconfienement phase transition.

5.1 A confining theory from D4-branes

One simple way to construct a confining gauge theory with a gravity dual, due to Witten
[24], is to start with Nc D4-branes, instead of with Nc D3-branes as in section 3. The gauge

theory on the D4-branes is a maximally supersymmetric, SU(Nc) SYM theory in five dimen-
sions whose field content consists, in addition to the gluons, of scalars and fermions in the

adjoint representation. In order to obtain a four-dimenional theory, consider compactifying
one spacelike direction of the D4-branes on a circle S1

L of length L. Since we would like to

break supersymmety, we impose antiperiodic boundary conditions for the fermions around this
circle. This projects out their zero-mode, so from the four-dimensional viewpoint they acquire
a tree-level mass M ∼ 1/L. Through quantum effects, a mass is also generated for the scalars.

The only degrees of freedom that remain massless in four dimensions are the (zero modes of)
the gauge fields, since a mass for these is forbidden by gauge invariance. Thus at energies

E " M the theory reduces to pure SU(Nc) Yang-Mills, which we expect to confine at some
dynamically generated scale ΛQCD. We also expect that a confinement/deconfinement phase
transition should occur at a temperature Tdec ∼ ΛQCD.

Before we proceed to construct the gravitational description of the D4-brane theory above,
let us note that we would like to study this theory in the regime in which ΛQCD " M , so that

dynamics we are interested in is not contaminated by the presence of additional fields at the
scale M . We will see in this section that, unfortunately, this limit cannot be described in the

dual string theory using solely supergravity. We will discuss the implications of this in the last
section.

The construction of the gravity solution dual to the theory on the D4-branes is easily

constructed along the lines of previous sections. One starts with the solution for near-extremal
D4-branes and takes an appropriate decoupling limit. The result is the ten-dimensional metric
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The last term on the right-hand side is the round metric on a unit four-sphere. The coordinates
on this sphere, together with the radial coordinate r, span the five-dimensional space transverse

to the D4-branes. The coordinates t, x(3), y span the five-dimensional worldvolume of the D4-
branes and are identified with the gauge theory coordinates. The coordinate y is periodically

identified with period L, i.e., y ∼ y + L.
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Unlike the metric on AdS5 × S5, the metric (36) does not factorise into a direct product

of some spacetime times a sphere. Nevertheless, the last term in (36) will play no role in the
following and so we will effectively work with the six-dimensional metric

ds2 =
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)3/2
(

−fdt2 + dx2
(3) + dy2
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R

r

)3/2 dr2

f
. (38)

In addition to the metric (36), the solution sourced by D4-branes possesses a non-trivial dilaton
field given by

eΦ =
( r

R

)3/4
. (39)

Physically, this is one of the most important differences between the D4-brane solution and the
analogous D3-brane solution, for which the dilaton is constant. Recalling that the dilaton is

related to the SYM coupling constant gYM and that r is related to the energy scale in the gauge
theory, we realise that the running dilaton above merely reflects a running coupling constant

in the gauge theory, namely a non-trivial RG flow; another reflection of this running is the
fact that the scalar curvature of the metric (38) is not constant. Thus, as promised, we have
constructed the first example of a non-AdS dual of a non-conformal gauge theory. Note that

the dilaton diverges as r → ∞, i.e., in the ultraviolet. This corresponds to the fact that the
five-dimensional dual gauge theory on the D4-branes is not renormalisable and hence a UV

completion is needed. We will not need the details of this completion here. Suffice it to say
that it is provided by the (2,0) superconformal theory on Nc M5-branes, consistently with the

fact the D4-brane solution lifts to the eleven-dimenional solution sourced by the M5-branes.
The metric (36) possesses a regular, finite-area horizon at r = r0. In order to determine

its Hawking temperature T , which we must identify with the gauge theory temperature, we

proceed as in section 4. We first continue to Euclidean signature via t → itE with the result

ds2
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R

)3/2
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+ dx2
(3) + dy2

)

+

(

R

r
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f
. (40)

Then we demand regularity at r = r0, which forces us to compactify tE on a circle S1
β of length

β = 1/T , i.e., tE ∼ tE + β. A simple calculation shows that

r0 =

(

4π

3

)2 R3

β2
. (41)
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constructed the first example of a non-AdS dual of a non-conformal gauge theory. Note that
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Then we demand regularity at r = r0, which forces us to compactify tE on a circle S1
β of length

β = 1/T , i.e., tE ∼ tE + β. A simple calculation shows that

r0 =

(

4π

3

)2 R3

β2
. (41)
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Two fundamental properties:
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Comments                

one of the most important ones being that it does not exhibit confinement. In this section

we will study the simplest example of a confining theory with a gravity dual, as well as the
gravitational analogue of the confinement/deconfienement phase transition.

5.1 A confining theory from D4-branes

One simple way to construct a confining gauge theory with a gravity dual, due to Witten
[24], is to start with Nc D4-branes, instead of with Nc D3-branes as in section 3. The gauge

theory on the D4-branes is a maximally supersymmetric, SU(Nc) SYM theory in five dimen-
sions whose field content consists, in addition to the gluons, of scalars and fermions in the

adjoint representation. In order to obtain a four-dimenional theory, consider compactifying
one spacelike direction of the D4-branes on a circle S1

L of length L. Since we would like to

break supersymmety, we impose antiperiodic boundary conditions for the fermions around this
circle. This projects out their zero-mode, so from the four-dimensional viewpoint they acquire
a tree-level mass M ∼ 1/L. Through quantum effects, a mass is also generated for the scalars.

The only degrees of freedom that remain massless in four dimensions are the (zero modes of)
the gauge fields, since a mass for these is forbidden by gauge invariance. Thus at energies

E " M the theory reduces to pure SU(Nc) Yang-Mills, which we expect to confine at some
dynamically generated scale ΛQCD. We also expect that a confinement/deconfinement phase
transition should occur at a temperature Tdec ∼ ΛQCD.

Before we proceed to construct the gravitational description of the D4-brane theory above,
let us note that we would like to study this theory in the regime in which ΛQCD " M , so that

dynamics we are interested in is not contaminated by the presence of additional fields at the
scale M . We will see in this section that, unfortunately, this limit cannot be described in the

dual string theory using solely supergravity. We will discuss the implications of this in the last
section.

The construction of the gravity solution dual to the theory on the D4-branes is easily

constructed along the lines of previous sections. One starts with the solution for near-extremal
D4-branes and takes an appropriate decoupling limit. The result is the ten-dimensional metric

ds2 =
( r

R

)3/2
(

−fdt2 + dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
+ R3/2r1/2ds2

(

S4
)

, (36)

where

f(r) = 1 − r3
0

r3
. (37)

The last term on the right-hand side is the round metric on a unit four-sphere. The coordinates
on this sphere, together with the radial coordinate r, span the five-dimensional space transverse

to the D4-branes. The coordinates t, x(3), y span the five-dimensional worldvolume of the D4-
branes and are identified with the gauge theory coordinates. The coordinate y is periodically

identified with period L, i.e., y ∼ y + L.
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Unlike the metric on AdS5 × S5, the metric (36) does not factorise into a direct product

of some spacetime times a sphere. Nevertheless, the last term in (36) will play no role in the
following and so we will effectively work with the six-dimensional metric

ds2 =
( r

R

)3/2
(

−fdt2 + dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
. (38)

In addition to the metric (36), the solution sourced by D4-branes possesses a non-trivial dilaton
field given by

eΦ =
( r

R

)3/4
. (39)

Physically, this is one of the most important differences between the D4-brane solution and the
analogous D3-brane solution, for which the dilaton is constant. Recalling that the dilaton is

related to the SYM coupling constant gYM and that r is related to the energy scale in the gauge
theory, we realise that the running dilaton above merely reflects a running coupling constant

in the gauge theory, namely a non-trivial RG flow; another reflection of this running is the
fact that the scalar curvature of the metric (38) is not constant. Thus, as promised, we have
constructed the first example of a non-AdS dual of a non-conformal gauge theory. Note that

the dilaton diverges as r → ∞, i.e., in the ultraviolet. This corresponds to the fact that the
five-dimensional dual gauge theory on the D4-branes is not renormalisable and hence a UV

completion is needed. We will not need the details of this completion here. Suffice it to say
that it is provided by the (2,0) superconformal theory on Nc M5-branes, consistently with the

fact the D4-brane solution lifts to the eleven-dimenional solution sourced by the M5-branes.
The metric (36) possesses a regular, finite-area horizon at r = r0. In order to determine

its Hawking temperature T , which we must identify with the gauge theory temperature, we

proceed as in section 4. We first continue to Euclidean signature via t → itE with the result

ds2
E

=
( r

R

)3/2
(

fdt2
E

+ dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
. (40)

Then we demand regularity at r = r0, which forces us to compactify tE on a circle S1
β of length

β = 1/T , i.e., tE ∼ tE + β. A simple calculation shows that

r0 =

(

4π

3

)2 R3

β2
. (41)
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• Can be seen by turning on temperature:
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Unlike the metric on AdS5 × S5, the metric (36) does not factorise into a direct product

of some spacetime times a sphere. Nevertheless, the last term in (36) will play no role in the
following and so we will effectively work with the six-dimensional metric

ds2 =
( r

R

)3/2
(

−fdt2 + dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
. (38)

In addition to the metric (36), the solution sourced by D4-branes possesses a non-trivial dilaton
field given by

eΦ =
( r

R

)3/4
. (39)

Physically, this is one of the most important differences between the D4-brane solution and the
analogous D3-brane solution, for which the dilaton is constant. Recalling that the dilaton is

related to the SYM coupling constant gYM and that r is related to the energy scale in the gauge
theory, we realise that the running dilaton above merely reflects a running coupling constant

in the gauge theory, namely a non-trivial RG flow; another reflection of this running is the
fact that the scalar curvature of the metric (38) is not constant. Thus, as promised, we have
constructed the first example of a non-AdS dual of a non-conformal gauge theory. Note that

the dilaton diverges as r → ∞, i.e., in the ultraviolet. This corresponds to the fact that the
five-dimensional dual gauge theory on the D4-branes is not renormalisable and hence a UV

completion is needed. We will not need the details of this completion here. Suffice it to say
that it is provided by the (2,0) superconformal theory on Nc M5-branes, consistently with the

fact the D4-brane solution lifts to the eleven-dimenional solution sourced by the M5-branes.
The metric (36) possesses a regular, finite-area horizon at r = r0. In order to determine

its Hawking temperature T , which we must identify with the gauge theory temperature, we

proceed as in section 4. We first continue to Euclidean signature via t → itE with the result

ds2
E

=
( r

R

)3/2
(

fdt2
E

+ dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
. (40)

Then we demand regularity at r = r0, which forces us to compactify tE on a circle S1
β of length

β = 1/T , i.e., tE ∼ tE + β. A simple calculation shows that

r0 =

(

4π

3

)2 R3

β2
. (41)
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dynamics we are interested in is not contaminated by the presence of additional fields at the
scale M . We will see in this section that, unfortunately, this limit cannot be described in the
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The last term on the right-hand side is the round metric on a unit four-sphere. The coordinates
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)3/2 dr2

f
. (38)

In addition to the metric (36), the solution sourced by D4-branes possesses a non-trivial dilaton
field given by

eΦ =
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R

)3/4
. (39)
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analogous D3-brane solution, for which the dilaton is constant. Recalling that the dilaton is

related to the SYM coupling constant gYM and that r is related to the energy scale in the gauge
theory, we realise that the running dilaton above merely reflects a running coupling constant

in the gauge theory, namely a non-trivial RG flow; another reflection of this running is the
fact that the scalar curvature of the metric (38) is not constant. Thus, as promised, we have
constructed the first example of a non-AdS dual of a non-conformal gauge theory. Note that

the dilaton diverges as r → ∞, i.e., in the ultraviolet. This corresponds to the fact that the
five-dimensional dual gauge theory on the D4-branes is not renormalisable and hence a UV

completion is needed. We will not need the details of this completion here. Suffice it to say
that it is provided by the (2,0) superconformal theory on Nc M5-branes, consistently with the

fact the D4-brane solution lifts to the eleven-dimenional solution sourced by the M5-branes.
The metric (36) possesses a regular, finite-area horizon at r = r0. In order to determine

its Hawking temperature T , which we must identify with the gauge theory temperature, we

proceed as in section 4. We first continue to Euclidean signature via t → itE with the result

ds2
E

=
( r

R
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(
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E

+ dx2
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)

+

(

R

r
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f
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Then we demand regularity at r = r0, which forces us to compactify tE on a circle S1
β of length

β = 1/T , i.e., tE ∼ tE + β. A simple calculation shows that

r0 =

(

4π

3

)2 R3

β2
. (41)
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identified with period L, i.e., y ∼ y + L.
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one of the most important ones being that it does not exhibit confinement. In this section

we will study the simplest example of a confining theory with a gravity dual, as well as the
gravitational analogue of the confinement/deconfienement phase transition.

5.1 A confining theory from D4-branes

One simple way to construct a confining gauge theory with a gravity dual, due to Witten
[24], is to start with Nc D4-branes, instead of with Nc D3-branes as in section 3. The gauge

theory on the D4-branes is a maximally supersymmetric, SU(Nc) SYM theory in five dimen-
sions whose field content consists, in addition to the gluons, of scalars and fermions in the

adjoint representation. In order to obtain a four-dimenional theory, consider compactifying
one spacelike direction of the D4-branes on a circle S1

L of length L. Since we would like to

break supersymmety, we impose antiperiodic boundary conditions for the fermions around this
circle. This projects out their zero-mode, so from the four-dimensional viewpoint they acquire
a tree-level mass M ∼ 1/L. Through quantum effects, a mass is also generated for the scalars.

The only degrees of freedom that remain massless in four dimensions are the (zero modes of)
the gauge fields, since a mass for these is forbidden by gauge invariance. Thus at energies

E " M the theory reduces to pure SU(Nc) Yang-Mills, which we expect to confine at some
dynamically generated scale ΛQCD. We also expect that a confinement/deconfinement phase
transition should occur at a temperature Tdec ∼ ΛQCD.

Before we proceed to construct the gravitational description of the D4-brane theory above,
let us note that we would like to study this theory in the regime in which ΛQCD " M , so that

dynamics we are interested in is not contaminated by the presence of additional fields at the
scale M . We will see in this section that, unfortunately, this limit cannot be described in the

dual string theory using solely supergravity. We will discuss the implications of this in the last
section.

The construction of the gravity solution dual to the theory on the D4-branes is easily

constructed along the lines of previous sections. One starts with the solution for near-extremal
D4-branes and takes an appropriate decoupling limit. The result is the ten-dimensional metric

ds2 =
( r

R

)3/2
(

−fdt2 + dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
+ R3/2r1/2ds2

(

S4
)

, (36)

where

f(r) = 1 − r3
0

r3
. (37)

The last term on the right-hand side is the round metric on a unit four-sphere. The coordinates
on this sphere, together with the radial coordinate r, span the five-dimensional space transverse

to the D4-branes. The coordinates t, x(3), y span the five-dimensional worldvolume of the D4-
branes and are identified with the gauge theory coordinates. The coordinate y is periodically

identified with period L, i.e., y ∼ y + L.
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Unlike the metric on AdS5 × S5, the metric (36) does not factorise into a direct product

of some spacetime times a sphere. Nevertheless, the last term in (36) will play no role in the
following and so we will effectively work with the six-dimensional metric

ds2 =
( r

R

)3/2
(

−fdt2 + dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
. (38)

In addition to the metric (36), the solution sourced by D4-branes possesses a non-trivial dilaton
field given by

eΦ =
( r

R

)3/4
. (39)

Physically, this is one of the most important differences between the D4-brane solution and the
analogous D3-brane solution, for which the dilaton is constant. Recalling that the dilaton is

related to the SYM coupling constant gYM and that r is related to the energy scale in the gauge
theory, we realise that the running dilaton above merely reflects a running coupling constant

in the gauge theory, namely a non-trivial RG flow; another reflection of this running is the
fact that the scalar curvature of the metric (38) is not constant. Thus, as promised, we have
constructed the first example of a non-AdS dual of a non-conformal gauge theory. Note that

the dilaton diverges as r → ∞, i.e., in the ultraviolet. This corresponds to the fact that the
five-dimensional dual gauge theory on the D4-branes is not renormalisable and hence a UV

completion is needed. We will not need the details of this completion here. Suffice it to say
that it is provided by the (2,0) superconformal theory on Nc M5-branes, consistently with the

fact the D4-brane solution lifts to the eleven-dimenional solution sourced by the M5-branes.
The metric (36) possesses a regular, finite-area horizon at r = r0. In order to determine

its Hawking temperature T , which we must identify with the gauge theory temperature, we

proceed as in section 4. We first continue to Euclidean signature via t → itE with the result

ds2
E

=
( r

R

)3/2
(

fdt2
E

+ dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
. (40)

Then we demand regularity at r = r0, which forces us to compactify tE on a circle S1
β of length

β = 1/T , i.e., tE ∼ tE + β. A simple calculation shows that

r0 =

(

4π

3

)2 R3

β2
. (41)
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BH

Chiral symmetry restoration 
at                                               Tχ ≥ Tc (1)

Nγ ∝ ηµνχµν , χµν ∼ Im〈JEM
µ JEM

ν 〉 (2)

Γ ∼ e−
√

λ ∼ e−Mq/T (3)

Γ ∼ 1/N2
c (4)

〈JEM
µ JEM

ν 〉 (5)

ΛQCD ∼ M e−
1

λ(M)

λ(M) & 1

λ(M) ' 1

SχSB

Nf & Nc (6)

O
(

ΛQCD

M

)
(7)

1
η

s
∼ 380× 1

4π

η

s
∼ 1

λ
(8)

1
η

s
∼ 9× 1

4π

η

s
∼ 1

λ
(9)

R4 = λ %4
s , λ = g2

YMNc (10)

Sstrong/Sfree = 3/4

Sstrong/Sfree ) 0.8

J/ψ, Υ, ...

ω = |(k|

v < 1 (11)

Tfun(v) = (1− v2)1/4 Tfun (12)

η

s
=

1

4π
(13)
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Separating the scales of confinement and chiral-symmetry

breaking in lattice QCD with fundamental quarks

D. K. Sinclair
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9700 South Cass Avenue, Argonne, IL 60439, USA

Abstract

Suggested holographic duals of QCD, based on AdS/CFT duality, predict that one should be

able to vary the scales of colour confinement and chiral-symmetry breaking independently. Fur-

thermore they suggest that such independent variation of scales can be achieved by the inclusion of

extra 4-fermion interactions in QCD. We simulate lattice QCD with such extra 4-fermion terms at

finite temperatures and show that for strong enough 4-fermion couplings the deconfinement tran-

sition occurs at a lower temperature than the chiral-symmetry restoration transition. Moreover

the separation of these transitions depends on the size of the 4-fermion coupling, confirming the

predictions from the proposed holographic dual of QCD.
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• “Verified” on the lattice:

Comments                



Recent application: N-N force

NN

Kim & Zahed ’09
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• The good:

- Very hard on the lattice.
- Very easy in the string description. 

• The bad:

- Most models have scalars (eg. D3/D7)
Nakamura, Seo, Sin & Yogendran ’06

Kobayashi, D.M., Matsuura, Myers & Thomson ’06
Karch & O’ Bannon  ‘07

- Very easy only at large      , where phase 
diagram may be very different !

Nc D4

Nf D8

Nf D̄8

SU(Nf)L × SU(Nf)R → SU(Nf)V (1)

−→ SU(Nf)V (2)

Check: Spectrum contains N2

f
− 1 massless pions.

ΛQCD ∼ Mglueball ∼ MKK ∼ 1/R (3)

〈ψ̄ψ〉 ∼ Mmeson ∼ 1/L (4)

Mq = 0 (5)

Tfun (6)

O ∼ ψ†
L P ei

R

A ψR (7)

〈JEM

µ JEM

µ 〉 (8)

cc̄ (9)
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- Fortunately, S&S does not. Kim, Sin & Zahed ’06
Horigome &Tanii ’06

Sin ’07
Yamada ‘07

Bergman, Lifschytz & Lippert ’07

General remarks

- However, see CFL phase in Chen, Hashimoto & Matsuura ‘09



Concluding thoughts



Is SUGRA good or bad?

E

N=4 SYM

M

ΛQCD

Within SUGRA approximation 
this is               .
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)
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Sstrong/Sfree = 3/4
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=
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transition at Tfun

O
(

Nf

Nc

)
(12)

1

Corrections are                 .

Pessimist: “This is a disaster!”.

Optimist: “This gets the order of magnitude right!”.

Eg.: Is               the biggest success or a disaster?η

s
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1

4π
(1)

D = q1q2q3 (2)

S = 2π

√

D2
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4
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Thank you.


