Results from T2 k and the current landscape of neutrino oscillation

National Autonomous University of Mexico Sep 1st 2021 Kendall Mahn Michigan State University for the T2K collaboration

Outline

Why are neutrinos interesting to study? Why is neutrino oscillation important?

> Recent results from the Tokaito-Kamioka (T2K) neutrino oscillation experiment

What is the future of accelerator-based oscillation experiments?

Disclaimer

- I speak (too) fast in English... sorry...
- Please! ask me to repeat or slow down
- It is OK to raise your hand or interrupt with a question

Feedback? Comments? <u>mahn@msu.edu</u>

Outline

Why are neutrinos interesting to study? Why is neutrino oscillation important?

• Three flavors of neutrinos (v) ... and antineutrinos (\overline{v})

- * Three flavors of neutrinos (v) ... and antineutrinos (\overline{v})
- Interact via the weak force

- Three flavors of neutrinos (v) ... and antineutrinos (\overline{v})
- Interact via the weak force

- * Three flavors of neutrinos (v) ... and antineutrinos (\overline{v})
- Interact via the weak force
- Abundant

- * Three flavors of neutrinos (v) ... and antineutrinos (\overline{v})
- Interact via the weak force
- Abundant

- * Three flavors of neutrinos (v) ... and antineutrinos (\overline{v})
- Interact via the weak force
- Abundant
- Massive

Credit: wikicommons

Neutrino mass is very small compared to other leptons

We know neutrinos have mass due to neutrino oscillation (2015 Nobel Prize)

What is neutrino oscillation?

What is neutrino oscillation?

This is a purely quantum mechanical effect where the mass eigenstates (v_1, v_2, v_3) are superpositions of the flavor eigenstates (v_e, v_μ, v_τ)

What is neutrino oscillation?

This is a purely quantum mechanical effect where the mass eigenstates (v₁, v₂, v₃) are superpositions of the flavor eigenstates (v_e, v_µ, v_τ)

If I reached in a jar of v_2 without looking, I would have about a 1/3 chance to eat:

a green jelly bean (v_e / lime)

or a yellow jelly bean (v_{μ} / lemon)

or a blue jelly bean (v_{τ} / berry)

$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$

$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$

$$\left|\nu_{\mu}(t)\right\rangle = -\sin \theta \ e^{-iE_{1}t} \left|\nu_{1}\right\rangle + \cos \theta \ e^{-iE_{2}t} \left|\nu_{2}\right\rangle$$

$$P_{\mu e} = \langle \nu_e | \nu_{\mu}(t) \rangle = \sin^2(2\theta) \sin^2(1.27\Delta m_{ij}^2 L/E)$$
Credit: wikipedia
$$v_e$$

$$v_{\mu}$$

 $\left|\nu_{\mu}(t)\right\rangle = -\sin \theta \ e^{-iE_{1}t} \left|\nu_{1}\right\rangle + \cos \theta \ e^{-iE_{2}t} \left|\nu_{2}\right\rangle$

$$P_{\mu e} = \langle \nu_e | \nu_\mu(t) \rangle = \sin^2(2\theta) \, \sin^2(1.27\Delta m_{ij}^2 L/E)$$

Credit: wikipedia

Experimental setup determines:

L (distance travelled, km) and E (GeV)

Experiments measure:

The mixing angle (θ) and Δm^2 (difference of the masses squared)

Outline

Why are neutrinos interesting to study? Why is neutrino oscillation important?

- Neutrino oscillation
 - Can we find new physics in the neutrino sector (neutrino CP violation?)

- Neutrino oscillation
 - Can we find new physics in the neutrino sector (neutrino CP violation?)
- What is the origin of neutrino mass? What is the ordering of the masses of the neutrinos?

- Neutrino oscillation
 - Can we find new physics in the neutrino sector (neutrino CP violation?)
- What is the origin of neutrino mass? What is the ordering of the masses of the neutrinos?
 - Related: Are there non-standard interactions in neutrinos?

Flavor states

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$

Mass states

Pontecorvo-Maki-Nakagawa-Sakata matrix (PMNS)

Elements of U are accessible with neutrino oscillation experiments

Flavor states

$$\begin{pmatrix} \boldsymbol{v}_e \\ \boldsymbol{v}_\mu \\ \boldsymbol{v}_\tau \end{pmatrix} = \begin{pmatrix} \boldsymbol{U}_{e1} & \boldsymbol{U}_{e2} & \boldsymbol{U}_{e3} \\ \boldsymbol{U}_{\mu 1} & \boldsymbol{U}_{\mu 2} & \boldsymbol{U}_{\mu 3} \\ \boldsymbol{U}_{\tau 1} & \boldsymbol{U}_{\tau 2} & \boldsymbol{U}_{\tau 3} \end{pmatrix} \begin{pmatrix} \boldsymbol{v}_1 \\ \boldsymbol{v}_2 \\ \boldsymbol{v}_3 \end{pmatrix}$$

Mass states

Quarks

Cabbibo-Kobayashi-Maskawa (CKM)

Measurements also allow to test unitarity of the mixing matrix

Graphic: J.Phys. G45 (2018) no.1, 013001

Flavor states

$$\begin{pmatrix} \boldsymbol{v}_{e} \\ \boldsymbol{v}_{\mu} \\ \boldsymbol{v}_{\tau} \end{pmatrix} = \begin{pmatrix} \boldsymbol{U}_{e1} & \boldsymbol{U}_{e2} & \boldsymbol{U}_{e3} \\ \boldsymbol{U}_{\mu 1} & \boldsymbol{U}_{\mu 2} & \boldsymbol{U}_{\mu 3} \\ \boldsymbol{U}_{\tau 1} & \boldsymbol{U}_{\tau 2} & \boldsymbol{U}_{\tau 3} \end{pmatrix} \begin{pmatrix} \boldsymbol{v}_{1} \\ \boldsymbol{v}_{2} \\ \boldsymbol{v}_{3} \end{pmatrix}$$

Mass states

Is there new physics in the leptonic sector?

Why should we search for CP violation?

≠

Observed matter/antimatter asymmetry requires Sakharov's conditions:

- CP violation
- Baryon number violation
- Non thermal equilibrium

Why should we search for CP violation?

≠

Observed matter/antimatter asymmetry requires Sakharov's conditions:

CP violation

CKM? Neutrinos? Strong CP violation?

Why should we search for CP violation?

≠

Observed matter/antimatter asymmetry requires Sakharov's conditions:

 CP violatior 	
----------------------------------	--

CKM? Neutrinos?

Not large enough...

Strong CP violation?

Not large enough...

- Neutrino oscillation
 - Can we find new physics in the neutrino sector (neutrino CP violation?)
- What is the origin of neutrino mass? What is the ordering of the masses of the neutrinos?
 - Related: Are there non-standard interactions in neutrinos?

Neutrino mass squared (m_i²)

Mass splitting:IΔm²₃₂l,Δm²₂₁

 $\Delta m_{21}^2 mass$ splitting is known to be positive from solar neutrino oscillation experiments

Neutrino mass squared (m_i²)

Mass splitting:IΔm²₃₂l,Δm²₂₁

We don't know if the 3rd or 1st mass eigenstate is heaviest ("mass hierarchy")

Neutrino mass squared (m_i^2)

Mass splitting:IΔm²₃₂l,Δm²₂₁

٠

 $\Delta m^{2}_{32} > 0$: "normal" hierarchy,

Neutrino mass squared (m_i²)

Mass splitting:IΔm²₃₂l,Δm²₂₁

 $\Delta m^{2}_{32} > 0$: "normal" hierarchy,

 $\Delta m_{32}^2 < 0$: "inverted" hierarchy

Neutrino mass squared (m_i²)

Mass splitting:IΔm²₃₂l,Δm²₂₁

 $\Delta m_{32}^2 > 0$: "normal" hierarchy, $\Delta m_{32}^2 < 0$: "inverted" hierarchy

Oscillation experiments are sensitive to the hierarchy due to interactions of v_e (and electrons) in matter

- Neutrino oscillation
 - Can we find new physics in the neutrino sector (neutrino CP violation?)
- What is the origin of neutrino mass? What is the ordering of the masses of the neutrinos?
- Related: Are there non-standard interactions in neutrinos?
 Neutrino mass and oscillation are applicable to astrophysics
 Supernova physics
 Large scale structure

Accessing neutrino oscillation

$$\begin{pmatrix} \boldsymbol{v}_e \\ \boldsymbol{v}_\mu \\ \boldsymbol{v}_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \boldsymbol{v}_1 \\ \boldsymbol{v}_2 \\ \boldsymbol{v}_3 \end{pmatrix}$$
$$\begin{pmatrix} \boldsymbol{v}_{e} \\ \boldsymbol{v}_{\mu} \\ \boldsymbol{v}_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \boldsymbol{v}_{1} \\ \boldsymbol{v}_{2} \\ \boldsymbol{v}_{3} \end{pmatrix}$$

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{i>j} \operatorname{Re}\left[U_{\beta i}U_{\alpha i}^{*}U_{\beta j}^{*}U_{\alpha j}\right] \sin^{2}\left(\frac{1.27\Delta m_{ij}^{2}L}{E}\right) + 2\sum_{i>j} \operatorname{Im}\left[U_{\beta i}U_{\alpha i}^{*}U_{\beta j}^{*}U_{\alpha j}\right] \sin\left(\frac{2.54\Delta m_{ij}^{2}L}{E}\right)$$

Probability to transition from flavor α to flavor β

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{i>j} \operatorname{Re}\left[U_{\beta i}U_{\alpha i}^{*}U_{\beta j}^{*}U_{\alpha j}\right] \sin^{2}\left(\frac{1.27\Delta m_{ij}^{2}L}{E}\right) + 2\sum_{i>j} \operatorname{Im}\left[U_{\beta i}U_{\alpha i}^{*}U_{\beta j}^{*}U_{\alpha j}\right] \sin\left(\frac{2.54\Delta m_{ij}^{2}L}{E}\right)$$
$$\Delta m^{2}_{32} \gg \Delta m^{2}_{21}$$

$$P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{1.27\Delta m_{32}^2 L}{E}\right) + \dots$$

$$P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{1.27\Delta m_{32}^2 L}{E}\right) + \dots$$

 v_{μ} and \overline{v}_{μ} disappearance channel

$$P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{1.27\Delta m_{32}^2 L}{E}\right) + \dots$$

 v_{μ} and \overline{v}_{μ} disappearance channel

Oscillation depends on:

 Amplitude determined by mixing angles: θ₁₂, θ₂₃, θ₁₃

$$P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{1.27 \Delta m_{32}^2 L}{E}\right) + \dots$$

 v_{μ} and \overline{v}_{μ} disappearance channel

Oscillation depends on:

- Amplitude determined by mixing angles: θ₁₂, θ₂₃, θ₁₃
- Frequency determined by mass splittings: ΙΔm²₃₂I,Δm²₂₁

$$P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{127\Delta m_{32}^2 L}{E}\right) + \dots$$

 v_{μ} and v_{μ} disappearance channel

- Amplitude determined by mixing angles: θ₁₂, θ₂₃, θ₁₃
- Frequency determined by mass splittings: |Δm²₃₂|,Δm²₂₁
- Mass ordering (hierarchy)

ve and ve appearance channel

Sensitive to all oscillation parameters

CP violating phase (CPV): δ_{CP}

$$P(\nu_{\mu} \rightarrow \nu_{e})$$

- Amplitude determined by mixing angles: θ₁₂, θ₂₃, θ₁₃
- Frequency determined by mass splittings: |Δm²₃₂|,Δm²₂₁
- Mass ordering (hierarchy)
- CP violating phase (CPV): δ_{CP}

	PREDICTED			
$\delta_{CP}=-\pi/2$	$\delta_{CP}=0$	δ_{CP} =+ $\pi/2$		
97.6	82.4	67.6		
16.7	19.0	20.9		
	δ _{CP} =–π/2 97.6 16.7	δCP=-π/2δCP=097.682.416.719.0		

 δ_{CP} changes the v_e and v_e appearance in opposite directions

v_e and v_e appearance channel

- Amplitude determined by mixing angles: θ₁₂, θ₂₃, θ₁₃
- Frequency determined by mass splittings: |Δm²₃₂|,Δm²₂₁
- Mass ordering (hierarchy)
- CP violating phase (CPV): δ_{CP}

SAMPLE	PREDICTED			
	$\delta_{CP}=-\pi/2$	δ_{CP} =0	δ_{CP} =+ $\pi/2$	
v _e appearance	97.6	82.4	67.6	
v _e appearance	16.7	19.0	20.9	

2D plot of neutrino appearance rate vs. antineutrino appearance rate

- Amplitude determined by mixing angles: θ₁₂, θ₂₃, θ₁₃
- Frequency determined by mass splittings: $|\Delta m^2_{32}|, \Delta m^2_{21}$
- Mass ordering (hierarchy)
- **CP violating phase** (CPV): δ_{CP}

SAMPLE	PREDICTED			
	δ_{CP} =–π/2	δ _{СР} =0	δ_{CP} =+ $\pi/2$	
v _e appearance	97.6	82.4	67.6	
v_e appearance	16.7	19.0	20.9	

2D plot of neutrino appearance rate vs. antineutrino appearance rate

- Amplitude determined by mixing angles: θ₁₂, θ₂₃, θ₁₃
- Frequency determined by mass splittings: $|\Delta m^2_{32}|, \Delta m^2_{21}$
- Mass ordering (hierarchy)
- CP violating phase (CPV): δ_{CP}

For increasing θ_{23} enhance both v_e and v_e appearance

- Amplitude determined by mixing angles: θ₁₂, θ₂₃, θ₁₃
- Frequency determined by mass splittings: $|\Delta m^2_{32}|, \Delta m^2_{21}$
- Mass ordering (hierarchy)
- CP violating phase (CPV): δ_{CP}

Normal to inverted hierarchy suppresses v_e appearance, enhances v_e appearance

Outline

Recent results from the Tokaito-Kamioka (T2K) neutrino oscillation experiment

T2K collaboration: ~500 members, 69 institutions, 12 countries

Long baseline experiments

nknown road to Unknown road - Google Maps $P(\nu_{\mu} \rightarrow \nu_{\mu}) \cong \lim_{\mu \to \pi} 2 2 \theta_{\mu} = \lim_{\mu \to \pi} 2 \frac{1.27 \Delta m_{32}^2 L}{1.27 \Delta m_{32}^2 L}$

Long baseline experiments

Tokai-to-Kamioka is an accelerator-based neutrino experiment

Broad physics program includes measurements of v_{μ} , \overline{v}_{μ} disappearance, v_{e} , \overline{v}_{e} appearance, exotica and neutrino interactions

Main ingredients:

- Accelerator produces an intense source
- Massive far detector (Super-Kamiokande)

Shine a light on unknown physics accelerator-produced neutrino beams

Shine a light on unknown physics accelerator-produced neutrino beams

Electrical current hits a filament producing light focused into a beam

protons→carbon target→unstable particles→neutrinos

Accelerator-produced neutrino beams

protons \rightarrow carbon target \rightarrow **unstable particles** \rightarrow **neutrinos**

Accelerator-produced neutrino beams

99% pure muon neutrino beam!

 Δm_{32}^2 , θ_{13} , θ_{23} , δ_{CP} , mass hierarchy

$$N_{FD}^{\alpha \to \beta}(E_{reco}) = \sum_{i} \phi_{\alpha}(E_{true}) \times \sigma_{\beta}^{i}(E_{true}) \times \epsilon_{\beta}(E_{true}) \times R_{i}(E_{true}; E_{reco}) \times P_{\alpha\beta}(E_{true})$$

Determine oscillation parameters from **event rates** with data taken over the last 10 years.

 Δm_{32}^2 , θ_{13} , θ_{23} , δ_{CP} , mass hierarchy

$$N_{FD}^{\alpha \to \beta}(E_{reco}) = \sum_{i} \phi_{\alpha}(E_{true}) \times \sigma_{\beta}^{i}(E_{true}) \times \epsilon_{\beta}(E_{true}) \times R_{i}(E_{true}; E_{reco}) \times P_{\alpha\beta}(E_{true})$$

Determine oscillation parameters from **event rates** with data taken over the last 10 years.

 Δm_{32}^2 , θ_{13} , θ_{23} , δ_{CP} , mass hierarchy

$$N_{FD}^{\alpha \to \beta}(E_{reco}) = \sum_{i} \phi_{\alpha}(E_{true}) \times \sigma_{\beta}^{i}(E_{true}) \times \epsilon_{\beta}(E_{true}) \times R_{i}(E_{true}; E_{reco}) \times P_{\alpha\beta}(E_{true})$$

Credit: www-sk.icrr.u-tokyo.ac.jp/

 Δm_{32}^2 , θ_{13} , θ_{23} , δ_{CP} , mass hierarchy

$$N_{FD}^{\alpha \to \beta}(E_{reco}) = \sum_{i} \phi_{\alpha}(E_{true}) \times \sigma_{\beta}^{i}(E_{true}) \times \epsilon_{\beta}(E_{true}) \times R_{i}(E_{true}; E_{reco}) \times P_{\alpha\beta}(E_{true})$$

 Δm_{32}^2 , θ_{13} , θ_{23} , δ_{CP} , mass hierarchy

$$N_{FD}^{\alpha \to \beta}(E_{reco}) = \sum_{i} \phi_{\alpha}(E_{true}) \times \sigma_{\beta}^{i}(E_{true}) \times \epsilon_{\beta}(E_{true}) \times R_{i}(E_{true}; E_{reco}) \times P_{\alpha\beta}(E_{true})$$

 Δm_{32}^2 , θ_{13} , θ_{23} , δ_{CP} , mass hierarchy

$$N_{FD}^{\alpha \to \beta}(E_{reco}) = \sum_{i} \phi_{\alpha}(E_{true}) \times \sigma_{\beta}^{i}(E_{true}) \times \epsilon_{\beta}(E_{true}) \times R_{i}(E_{true}; E_{reco}) \times P_{\alpha\beta}(E_{true})$$

 Δm_{32}^2 , θ_{13} , θ_{23} , δ_{CP} , mass hierarchy

$$N_{FD}^{\alpha \to \beta}(E_{reco}) = \sum_{i} \phi_{\alpha}(E_{true}) \times \sigma_{\beta}^{i}(E_{true}) \times R_{i}(E_{true}; E_{reco}) \times \epsilon_{\beta}(E_{true}) \times P_{\alpha\beta}(E_{true})$$

Flux (Φ)InteractionRelationshipmodel (cross between truth and
section, σ)observables (R)

Efficiency (ϵ)

Predicted event rate built from neutrino source, interaction, detector models

 Δm_{32}^2 , θ_{13} , θ_{23} , δ_{CP} , mass hierarchy

$$N_{FD}^{\alpha \to \beta}(E_{reco}) = \sum_{i} \phi_{\alpha}(E_{true}) \times \sigma_{\beta}^{i}(E_{true}) \times \epsilon_{\beta}(E_{true}) \times R_{i}(E_{true}; E_{reco}) \times P_{\alpha\beta}(E_{true})$$

$$N_{ND}^{\alpha}(E_{reco}) = \sum_{i} \phi_{\alpha}(E_{true}) \times \sigma_{\alpha}^{i}(E_{true}) \times \epsilon_{\alpha}(E_{true}) \times R_{i}(E_{true}; E_{reco})$$

Model is tested with near detector information

- Time dependent effects (beamline stability)
- Reduces shared systematic uncertainty on source (flux), interaction model

 Δm_{32}^2 , θ_{13} , θ_{23} , δ_{CP} , mass hierarchy

$$N_{FD}^{\alpha \to \beta}(E_{reco}) = \sum_{i} \phi_{\alpha}(E_{true}) \times \sigma_{\beta}^{i}(E_{true}) \times \epsilon_{\beta}(E_{true}) \times R_{i}(E_{true}; E_{reco}) \times P_{\alpha\beta}(E_{true})$$

$$N_{ND}^{\alpha}(E_{reco}) = \sum_{i} \phi_{\alpha}(E_{true}) \times \sigma_{\alpha}^{i}(E_{true}) \times \epsilon_{\alpha}(E_{true}) \times R_{i}(E_{true}; E_{reco})$$

Model is tested with near detector information

 Δm_{32}^2 , θ_{13} , θ_{23} , δ_{CP} , mass hierarchy

$$N_{FD}^{\alpha \to \beta}(E_{reco}) = \sum_{i} \phi_{\alpha}(E_{true}) \times \sigma_{\beta}^{i}(E_{true}) \times \epsilon_{\beta}(E_{true}) \times R_{i}(E_{true}; E_{reco}) \times P_{\alpha\beta}(E_{true})$$

$$N_{ND}^{\alpha}(E_{reco}) = \sum_{i} \phi_{\alpha}(E_{true}) \times \sigma_{\alpha}^{i}(E_{true}) \times \epsilon_{\alpha}(E_{true}) \times R_{i}(E_{true}; E_{reco})$$

Model is tested with near detector information

T2K: Data collection summary

OA2020 results: Run 1-10 v-mode POT (FHC) : 1.851 x 10²¹ v-mode POT (RHC) : 1.651 x 10²¹ Data taken with SK Gd: Run 11: v-mode POT (FHC) : 2.116 x 10^{21} \overline{v} -mode (RHC) POT : 1.651 x 10^{21} Total delivered: 3.818x10²¹

T2K: Precision disappearance results

which are parameter values consistent with our data

T2K: Precision disappearance results

T2K data produces "allowed" regions (closed contours) which are parameter values consistent with our data

T2K: Precision disappearance results

T2K data is consistent with maximal mixing (θ_{23} =45deg)

The current global picture, part 1

Comparisons with other experiments (reactors, atmospheric neutrinos, accelerator-based) allow us to test if the three flavor picture is complete
	$\delta_{\rm CP} = -\pi/2$	$\delta_{\rm CP} = 0$	$\delta_{\rm CP} = \pi/2$	$\delta_{\rm CP} = \pi$	Data
FHC $1R\mu$	356.48	355.76	356.44	357.27	318
RHC $1 R \mu$	138.34	137.98	138.34	138.73	137
FHC 1Re	97.62	82.44	67.56	82.74	94
$ m RHC \ 1Re$	16.69	18.96	20.90	18.63	16
FHC 1R $\nu_e \text{ CC1}\pi^+$	9.20	8.01	6.51	7.71	14
FHC 1R μ ($E_{\rm rec} < 1.2 {\rm GeV}$)	213.40	213.06	213.36	213.81	191
RHC 1R μ ($E_{\rm rec} < 1.2 {\rm GeV}$)	68.53	68.34	68.53	68.74	71

Data currently has an excess of electron neutrino events,

	$\delta_{\rm CP} = -\pi/2$	$\delta_{\rm CP} = 0$	$\delta_{\rm CP} = \pi/2$	$\delta_{\rm CP} = \pi$	Data
FHC $1R\mu$	356.48	355.76	356.44	357.27	318
RHC $1 R \mu$	138.34	137.98	138.34	138.73	137
FHC 1Re	97.62	82.44	67.56	82.74	94
RHC 1Re	16.69	18.96	20.90	18.63	16
FHC 1R $\nu_e \text{ CC1}\pi^+$	9.20	8.01	6.51	7.71	14
FHC 1R μ ($E_{\rm rec} < 1.2 {\rm GeV}$)	213.40	213.06	213.36	213.81	191
RHC $1 \mathrm{R} \mu \ (E_{\mathrm{rec}} < 1.2 \mathrm{GeV})$	68.53	68.34	68.53	68.74	71

Data currently has an excess of electron neutrino events, and a deficit of electron antineutrino events...

CP phase vs. oscillation parameter (θ_{13})

Our data is also consistent with independent results (reactor measurements of θ_{13} only) Combined, our data is inconsistent with some values of δ_{CP} - first significant constraint on CP violation in neutrinos

The current global picture, part 2

Projection now in δ_{CP} vs. θ_{23} space

The current global picture, part 2

78

. 20

Outline

Recent results from the Tokaito-Kamioka (T2K) neutrino oscillation experiment

Vibrant program in cross section and exotic physics

T2K: Tackling the challenge of interactions

Oscillation analysis

Model Development: Reduced systematic uncertainty through external data, theory

Completeness: tests of impact of modeling with bias studies

Cross section measurements

Unique, new or improved, measurements for theory and current, future experimental program

Cross section results in 2020-2021

	Reference
First T2K measurement of transverse kinematic imbalance in the muon- neutrino charged-current single π + production channel containing at least one proton	<i>PRD</i> 103 (2021) 11, 112009
Measurements of v_{μ} and v_{μ} charged-current cross-sections without detected pions or protons on water and hydrocarbon at a mean antineutrino energy of 0.86 GeV	<i>PTEP</i> 2021 (2021) 4, 043C01
Simultaneous measurement of the muon neutrino charged-current cross section on oxygen and carbon without pions in the final state at T2K	<i>PRD</i> 101 (2020) 11, 112004
Measurement of the charged-current electron (anti-)neutrino inclusive cross-sections at the T2K off-axis near detector ND280	<i>JHEP</i> 10 (2020) 114
First combined measurement of the muon neutrino and antineutrino charged-current cross section without pions in the final state at T2K	<i>PRD</i> 101 (2020) 11, 112001

T2K exotics: Heavy Neutral Lepton search

 $K^+ \rightarrow \ell^+ N$

 $N \to \ell^{\pm} \pi^{\mp}, \ell^{\pm} \ell^{\mp} \nu$

Production of heavy neutral leptons (N) from kaon decay

- Uses large volume, low mass TPCs for signal selection
- Best high-mass limits on coupling to N to μ, e

T2K: (light) sterile neutrino search

Search for sterile neutrinos... with the far detector

 3+1 model including muon, electron and neutral current samples

https://arxiv.org/abs/1902.06529

Outline

What is the future of accelerator-based oscillation experiments?

Continued run of T2K

- Plan to collect at least 10 x10²¹ POT by ~2026
- Accelerator upgrade (to 1.3 MW)
 - 50% effective statistical gain from operational and systematic improvements (30% <u>achieved</u>)

Continued run of T2K

- Plan to collect at least 10 x10²¹ POT by ~2026
- Accelerator upgrade (to 1.3 MW)
 - 50% effective statistical gain from operational and systematic improvements (30% <u>achieved</u>)

Continued run of T2K

- Plan to collect at least 10 x10²¹ POT by ~2026
- Accelerator upgrade (to 1.3 MW)
 - 50% effective statistical gain from operational and systematic improvements (30% <u>achieved</u>)
- Upgrade to T2K beam line and near detectors ("ND upgrade"); incorporation of WAGASCI+ BabyMind into T2K

Prospects for T2K: ND upgrade

- ND upgrade will have improved acceptance compared to ND280
- Improved constraint of cross section models within oscillation analysis; improved statistics at high angle for cross section measurements

The bright future of neutrino physics Two big projects planned

Design report: arxiv1805.04163

Deep Underground Neutrino Experiment (DUNE)

New capabilities!

Precision Reaction Independent Spectrum Measurement

New capabilities!

Precision Reaction Independent Spectrum Measurement

Energy peak shifts down, spectrum narrows

New capabilities!

Precision Reaction Independent Spectrum Measurement

$$N_{FD}^{\alpha \to \beta}(\mathbf{p}_{reco}) = \sum_{i} \phi_{\alpha}(E_{true}) \times \sigma_{\beta}^{i}(\mathbf{p}_{true}) \times P_{\alpha\beta}(E_{true}) \times \epsilon_{\beta}(\mathbf{p}_{true}) \times R_{i}(\mathbf{p}_{true};\mathbf{p}_{reco})$$

Many near detector positions can approximate far detector oscillated flux!

Details in arxiv 2103.13910

The frontier of neutrinos is exciting

 $\Delta m_{32}^2 \ [eV^2/c^4]$

2.8

2.6

2.4

2.2

0.35

0.4

0.45

<u>×10⁻³</u>

T2K run 1-10

NOvA 2020

Is the three flavor picture complete? Consistency between measurements?

Is there CPV in neutrinos?

Is θ₂₃ maximal or not?

What is the mass hierarchy?

T2K Preliminary

+ Best fits

90% C.L.

0.65

 $\sin^2\theta_{23}$

Normal ordering

0.6

Super-K 2020

IceCube 2017

0.55

0.5

The frontier of neutrinos is still being explored

Complementarity measurements!

Is there CPV in neutrinos?

Is θ_{23} maximal or not?

What is the mass hierarchy?

The future with neutrinos is bright

Let's keep exploring!

Come talk to me anytime about neutrinos!

mahn@msu.edu

Support from:

Department of Energy award DE-SC0015903, DUNE project

Backup

Complementary window: Matter effects

Model Progress on T2K

Dominant uncertainty in oscillation analysis from neutrino interaction (cross section) model

	1-ring e-like			
Error source	v-mode	v-mode	v _e /v _e	
SK Detector	2.83	3.79	1.47	
SK FSI+SI+PN	3.02	2.31	1.58	
Flux + Xsec constrained	3.02	2.86	2.31	
E _b	7.26	3.66	3.74	
σ(ν _e)/σ(ν _μ)	2.63	1.46	3.03	
ΝC1γ	1.07	2.58	1.49	
NC Other	0.14	0.33	0.18	
All Systematics	8.81	7.03	5.87	

Prospects for T2K: WAGASCI+BabyMIND

- WAGASCI+BabyMIND adds another off-axis point (1.5 deg) for water target
- Sign selection for neutrino, antineutrino separation

Maximum benefit to T2K for model independent selection and extraction machinery; differential measurements₀₁

T2K oscillation analysis strategy

 Δm_{32}^2 , θ_{13} , θ_{23} , δ_{CP} , mass hierarchy

$$N_{FD}^{\alpha \to \beta}(E_{reco}) = \sum_{i} \phi_{\alpha}(E_{true}) \times \sigma_{\beta}^{i}(E_{true}) \times R_{i}(E_{true}; E_{reco}) \times \epsilon_{\beta}(E_{true}) \times P_{\alpha\beta}(E_{true})$$

Flux (Φ)InteractionRelationshipmodel (cross between truth and
section, σ)observables (R)

Efficiency (ϵ)

Hadron production experiments

Accelerator R&D

Beamline monitoring Electron scattering data

Neutrino scattering data

Theoretical modelling

Simulation and software development

Simulation development

Detector R&D

External measurements, including test beams