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The Origin of the Magnetic Field

Collision is not central
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Observations Supporting the Existence of an Intense

Magnetic Field

PHENIX experiments report an excess of direct photons in

comparison with the expectations based on the individual partons

collisions.

They also report an azimuthal anisotropy v2 higher than expected.

It was suggested that a conformal anomaly in the presence of a

strong magnetic �eld could cause the current not to be conserved.
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Just Some Words About the Gauge Gravity Correspondence

Motivated by the decoupling limit of one physical system in two

perspectives.

It has not been proven.

Establishes a correspondence between a 4D gauge theory and ST in

certain backgrounds.
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Physical Quantities We Have Studied

I Direct photon production.

I DC conductivity parallel and perpendicular to the �eld.

I Drag force experienced by a quark in the plasma.

I Running of double trace operators coupling.

I Meson Physics.

I Phase diagrams.
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Main result for FLL

χ(k, x) = −2Im[G̃R(ω)]|ψx(x)|2 (1)

where the function ψx(x) is a solution to the Schrödinger equation

that describes Landau levels in ordinary Quantum Mechanics with

ω taking the place of the mass m, so the energy spectrum in terms

of the Landau frequency

ωL =
e B

ω
,

is

En =

(
n +

1

2

)
ωL. (2)
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Main result for FLL

In Landau gauge we need to set the origin of the coordinate system

so that the guiding center parameter is equal to zero.

In the symmetric gauge we only recover states with canonical

angular momentum equal to zero, not implying the vanishing of the

kinetic angular momentum, for which we provide an spectrum.

Leonardo Patiño Magnetic Field in the Plasma



Steps to follow

I Build a 10-D background with a magnetic �eld.

I Embed a D7-brane in it to add fundamental degrees of

freedom.

I Study the perturbations of such embedding.

I Compute the spectral function.

I Do some checks.
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Steps to follow
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The Background We Used

The action is

S =
1

16πG5

[
−
∫

d5x
√
−g
(
R + FMNFMN −

12

L

)
+

8

3
√
3

∫
A ∧ F ∧ F

]
,

(3)

with the general ansatz

ds2 = −U(r)dt2 +
1

U(r)
dr2 + V (r)(dx2 + dy2) + W (r)dz2,

for the metric and

FBG = Bdx ∧ dy ,

with constant B for the �eld strength.
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The uplift
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The uplift

ds210 = ds25 +2

{
dθ2 + sin2 θ

(
dφ1 +

2√
3
Aµdx

µ

)2

+ cos2 θ

[
dϑ2 + sin2 ϑ

(
dφ2 +

2√
3
Aµdx

µ

)2

+ cos2 ϑ

(
dφ3 +

2√
3
Aµdx

µ

)2 ]}
,

(4)
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The uplift

F(5) = G(5) + ∗G(5), (5)

with

G(5) = −4ε(5) +
2√
3

[
sin θ cos θdθ ∧

(
dφ1 +

2√
3
Aµdx

µ

)
− cos θ sin θ sin2 ϑdθ ∧

(
dφ2 +

2√
3
Aµdx

µ

)
+ sinϑ cosϑ cos2 θdϑ ∧

(
dφ2 +

2√
3
Aµdx

µ

)
− cos θ sin θ cos2 ϑdθ ∧

(
dφ3 +

2√
3
Aµdx

µ

)
− cosϑ sinϑ cos2 θdϑ ∧

(
dφ3 +

2√
3
Aµdx

µ

)]
∧ ∗̄F ,

(6)
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The uplift

Once (10) and F = Bdx ∧ dy have been explicitly placed in (4) and
(5), the substitution of the resulting

ds2
10

= −U(r)dt2 +
1

U(r)
dr2 + V (r)

(
dx2 + dy2

)
+ W (r)dz2

+
[
dθ2 + sin2 θd φ̃2

1
+ cos2 θ

(
dϑ2 + sin2 ϑd φ̃2

2
+ cos2 ϑd φ̃2

3

)]
,

(7)

and 5-form into the equations of type IIB supergravity in ten

dimensions indeed leads to the 5-D equations and nothing else,

regardless of whether we use d φ̃i = dφi + 2√
3
B x dy or

d φ̃i = dφi + 1√
3
B(x dy − y dx).
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Embedding
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Embedding

The embedding is dictated by the DBI action

SDBI = −TD7Nf

∫
d8x

√
−det(gD7), (8)

where gD7 is the induced metric on the D7-brane, and its tension is

given by

TD7 =
1

(2πls)7lsgs
=

1

16π6
λNc , (9)

while the constants Nc and Nf respectively indicate the number of

D3-branes sourcing the background and D7-branes embedded in it.
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Embedding

We express the determinant of the metric induced on the

worldvolume in terms of θemb and φ1emb as functions of r , x , and y .

For the calculations ahead, it is more convenient to use

ψ(r , x , y) ≡ sin θemb(r , x , y) and we will refer to φ1emb as ϕ.

Leonardo Patiño Magnetic Field in the Plasma



Embedding

The direct substitution of ψ(r , x , y) = 0 and ϕ(r , x , y) = ϕ0 into

the embedding equations shows that these functions satisfy them

for any real constant ϕ0 regardless of the norm chosen for A.
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Embedding

Perturbing the embedding function ψ as ψ + δψ makes δψ dual to

scalar excitations of the fundamental �elds in the gauge theory,

while perturbations δϕ of ϕ correspond to psudoscalar ones.
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Landau gauge

Choosing Landau gauge

A = B x dy

to describe the constant magnetic �eld

B = B dx ∧ dy

corresponds to setting

d φ̃i = dφi +
2√
3
B x dy .
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Landau gauge

Taking their Fourier transformation in the directions that preserve

translational invariance we write

δψ =

∫
dωdqydqz

(2π)3
e−iωt+iqyy+iqzzδψ(k, r , x), (10)

where k = (ω, qy , qz).
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Landau gauge

Working in a frame where qy = qz = 0, and writing

δψ(k, r , x)) = ψr (r)ψx(x),

and

δϕ = 0,

the equation from the variation of (8) with respect to

δϕ(r , t, x , y , z) is satis�ed to all orders, while at leading order in

the perturbation the one from varying with respect to

δψ(r , t, x , y , z) reduces to

ψx

[
6VW

(
3 +

ω2

U

)
ψr + 3UVW ′ψ′r + 6W

(
VU ′ψ′r

+ UV ′ψ′r + UVψ′′r
)]

+ Wψr

(
6∂2xψx − 8B2x2ψx

)
= 0.

(11)
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Landau gauge

The latter can be separated into(
3
U

ω
+ ω

)
VWψr +

1

2

U2

ω
VW ′ψ′r

+
U

ω
W
(
VU ′ψ′r + UV ′ψ′r + UVψ′′r

)
= 2EUWψr ,

(12)

and
1

2ω

[
−∂2xψx + e2B2x2ψx

]
= Eψx . (13)
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Landau gauge

The writing of the corresponding coupling as e = 2√
3
is an accurate

reading of the 1-forms d φ̃i = dφi + 2√
3
B x dy .
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Landau gauge

Demanding δψ to remain bounded for all values of x leads to the

quantization

En =

(
n +

1

2

)
ωL, (14)

of the constant E in terms of the Landau frequency ωL = e B
ω and

the Landau level number n.
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The symmetric gauge

In the symmetric gauge

A =
B

2
(x dy − y dx),

implemented by setting

d φ̃i = dφi +
1√
3
B(x dy − y dx),

we write

δψ =

∫
dωdqz
(2π)2

e−iωt+iqzzδψ(k, r , x , y), (15)

with k = (ω, qz), and factoring

δψ(k, r , x , y)) = ψr (r)ψxy (x , y),

while keeping

δϕ = 0,

as before.
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The symmetric gauge

The perturbative equation from the variation with respect to δψ
separates as before with the only di�erence that now we have

1

2ω

[
−∂2xψxy − ∂2yψxy +

1

4
e2B2(x2 + y2)ψxy

]
= Eψxy , (16)

instead of (13).
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The symmetric gauge

The equation from varying δϕ at leading perturbative order reduces

to

y∂xψxy − x∂yψxy = 0, (17)

which left hand side is interestingly proportional to the canonical

angular momentum operator

Lz ≡ −i(x∂y − y∂x). (18)
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The symmetric gauge

Any function ψxy that simultaneously solves (16) and (17) is also a

solution to

1

2ω

[
− ∂2xψxy − ∂2yψxy − e B Lzψxy

+
1

4
e2B2(x2 + y2)ψxy

]
= E ψxy .

(19)
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The symmetric gauge

The kinetic angular momentum is given by the operator

Lz ≡ x(−i∂y − e Ay )− y(−i∂x − e Ax), (20)

which in our setting, and given the Lzψxy = 0 restriction, reduces to

Lz = −e B

2
(x2 + y2), (21)

when acting over our set of solutions ψxy .
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The symmetric gauge

The expectation value

〈x2 + y2〉,

in the nth Landau level with lz = 0 is given by

2

e B
(n + 1).

The solutions we just found therefor have an associate a kinetic

angular momentum equal to n + 1, in ~ units, and a cyclotron

frequency given again by ωL = e B
ω .
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The spectral function

The retarded Green function for the scalar associated to δψ is given

by

GR(k, x) = lim
r→∞

Q(r , x)
δψ∗(k, r , x)∂rδψ(k, r , x)

δψ∗(k,∞, x)δψ(k,∞, x)

= lim
r→∞

Q(r , x)|ψx(x)|2∂rψr (r)

ψr (r)
,

(22)

where in the last equality we substituted

δψ(k, r , x)) = ψr (r)ψxy (x , y).
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The spectral function

The expression above is obtained by �nding the boundary term that

remains after evaluating the action on the solution

(ψ + δψ, ϕ+ δϕ), and taking its second variation with respect to

the dual of the source µ(x).
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The spectral function

As r →∞, ψr (r) can be approximated by

ψr (r) ' ψr
(−1)

[
1

r
− U1

2r2
+
(
ω2 − 2E

) log r

2r3

− 3U1

(
ω2 − 2E

) log r

4r4
+ 3U1

(
ω2 − 2E + U1

2
) 1

4r4

]
+ ψr

(−3)
[
1

r3
− 6U1

1

4r4

]
+O

(
1

r5

)
,

(23)

from where we can read the source term

µ(x) = −1
2

√
λTψr

(−1)ψx(x), (24)

for the scalar operator dual to δψ.
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The spectral function

This boils down to Q(r , x) being the term of �rst order in the

perturbation found in what results from computing

−TD7Nf
1

(−1
2

√
λT )2r2

∂δψ′
√
−det(gD7). (25)
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The spectral function

Upon substitution we obtain

Q(r , x) = −TD7Nf
1

(−1
2

√
λT )2r2

2π2UV
√
W , (26)

and the �nal Green function is

GR(ω, x) = − NcNf

2π4T 2
lim
r→∞

r−2UV
√
W |ψx(x)|2∂rψr (r)

ψr (r)

= |ψx(x)|2G̃R(ω).

(27)
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The spectral function

We conclude that the density of quasinormal modes with any given

frequency ω is dependent on the position in the gauge theory

directions only through |ψx(x)|2.
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The radial pro�le

Figure: n = 5, ω/2πT = 1
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The radial pro�le

Figure: b/T 2 = 17.43, ω/2πT = 1
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The radial pro�le

Figure: b/T 2 = 17.43, n = 5
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The radial pro�le

We have numerically con�rmed that the coe�cient ψr
(−1) is

entirely real, while the �rst imaginary contribution to the series

comes from ψr
(−3).

From the expressions above we see that this is the correct

asymptotic behavior to lead to a well de�ned spectral function.
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Thank You All Very Much
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