Pruebas de Nueva Física en neutrinos solares y de reactores

Azucena Bolaños Carrera Asesor de Tesis: Dr. Omar Miranda Romagnoli

Centro de Investigación y de Estudios Avanzados del IPN
Reunion Anual de la DP Y C

México, DF., Mayo 2009

Resumen

- Motivación
- 2 Dispersión neutrino-electrón
- 3 Super Kamiokande, SNO y las Interacciones no-estándar
- 4 Física Unparticle
- 5 El operador unparticle
- 6 Dispersión anti-neutrino electrón en reactores
- Sumario

- El origen de la masa de los neutrinos sigue siendo y probablemente será por mucho tiempo más una pregunta cuya respuesta será fundamental para entender la naturaleza de las partículas elementales.
- Una masa diferente de cero de los neutrinos es una fuerte motivación teórica para buscar Física mas allá del ME
- Las oscilaciones de neutrinos son la solución aceptada al problema del déficit en la detección de los neutrinos solares

- El origen de la masa de los neutrinos sigue siendo y probablemente será por mucho tiempo más una pregunta cuya respuesta será fundamental para entender la naturaleza de las partículas elementales.
- Una masa diferente de cero de los neutrinos es una fuerte motivación teórica para buscar Física mas allá del ME
- Las oscilaciones de neutrinos son la solución aceptada al problema del déficit en la detección de los neutrinos solare.

- El origen de la masa de los neutrinos sigue siendo y probablemente será por mucho tiempo más una pregunta cuya respuesta será fundamental para entender la naturaleza de las partículas elementales.
- Una masa diferente de cero de los neutrinos es una fuerte motivación teórica para buscar Física mas allá del ME
- Las oscilaciones de neutrinos son la solución aceptada al problema del déficit en la detección de los neutrinos solares

Motivación

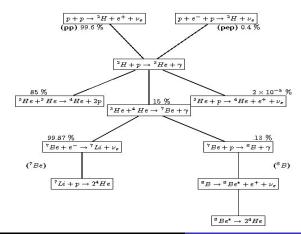
• Como consecuencia: Si existe el problema del origen de la masa del neutrino; si existe la oscilación de los neutrinos... Entonces naturalmente el sector de neutrinos del Modelo estándar es tierra fértil para buscar indicios de nueva Física

- Así, en nuestro caso buscamos estas señales de nueva Física en 2 lugares: experimentos de neutrinos solares y experimentos de neutrinos de reactores.
- Alentados por varias propuestas de Física más allá del M en el sector de neutrinos realizamos un análisis fenomenológico.

- Como consecuencia: Si existe el problema del origen de la masa del neutrino; si existe la oscilación de los neutrinos... Entonces naturalmente el sector de neutrinos del Modelo estándar es tierra fértil para buscar indicios de nueva Física
- Así, en nuestro caso buscamos estas señales de nueva Física en 2 lugares: experimentos de neutrinos solares y experimentos de neutrinos de reactores.
- Alentados por varias propuestas de Física más allá del MI en el sector de neutrinos realizamos un análisis fenomenológico.

- Como consecuencia: Si existe el problema del origen de la masa del neutrino; si existe la oscilación de los neutrinos... Entonces naturalmente el sector de neutrinos del Modelo estándar es tierra fértil para buscar indicios de nueva Física
- Así, en nuestro caso buscamos estas señales de nueva Física en 2 lugares: experimentos de neutrinos solares y experimentos de neutrinos de reactores.
- Alentados por varias propuestas de Física más allá del MI en el sector de neutrinos realizamos un análisis fenomenológico.

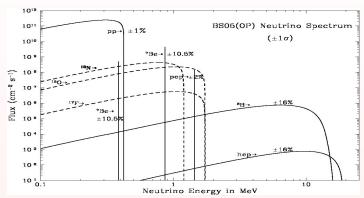
- Como consecuencia: Si existe el problema del origen de la masa del neutrino; si existe la oscilación de los neutrinos... Entonces naturalmente el sector de neutrinos del Modelo estándar es tierra fértil para buscar indicios de nueva Física
- Así, en nuestro caso buscamos estas señales de nueva Física en 2 lugares: experimentos de neutrinos solares y experimentos de neutrinos de reactores.
- Alentados por varias propuestas de Física más allá del ME en el sector de neutrinos realizamos un análisis fenomenológico.


El MES

El Modelo Estándar Solar (MES) que describe al sol, el cual forma parte de la secuencia principal de estrellas que han estado brillando de modo regular y silencioso por alrededor de 4.6 billones de años, se basa en los siguientes parámetros:

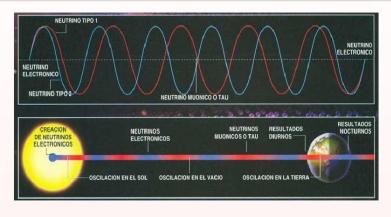
Luminosidad superficial	$L_{\odot} = 3.86(1 \pm 0.005) \times 10^{33} \frac{\text{erg}}{\text{seg}}$
Temperatura Superficial	$T_{s\odot} = 5.78 \times 10^3 K$
Masa Solar	$M_{\odot} = 1.99 \times 10^{33} g$
Radio Solar	$R_{\odot} = 6.96 \times 10^5 Km$

Reacciones Nucleares Solares

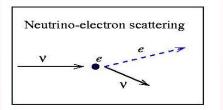


Motivacion

Dispersión neutrino-electrón Super Kamiokande, SNO y las Interacciones no-estándar Física Unparticle el operador Unparticle Dispersión anti-neutrino electrón en reactores Sumario


Neutrinos solares

Neutrinos solares



イロト (部) (注) (注)

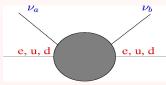
Detección en Super-Kamiokande

En el Modelo Estándar la dispersión ν – e es dada por:

$$\mathcal{L}_{eff,int} = -\sqrt{2}G_f(\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\alpha})[g_R(\bar{e}\gamma_{\mu}P_Re) + g_L(\bar{e}\gamma_{\mu}P_Le)]$$
 (1)

Y la sección eficaz correspondiente es:

$$\frac{d\sigma}{dT} = \frac{2G_F m_e}{\pi} [g_L^2 + g_R^2 (1 - \frac{T}{E_{\nu}})^2 - g_L g_R \frac{m_e T}{E_{\nu}^2}]$$



dispersión neutrino-electrón e INE

Cuando tomamos en cuenta Interacciones no-estándar, el lagrangiano se modifica de la manera siguiente:

$$\mathcal{L}_{\mathcal{I}\mathcal{N}\mathcal{E}} = -2\sqrt{2}G_{F}\left(\bar{\nu}_{\alpha}\gamma^{\mu}P_{L}\nu_{\beta}\right)\left[\epsilon_{\alpha\beta R}\left(\bar{e}\gamma_{\mu}P_{R}e\right) + \epsilon_{\alpha\beta L}\left(\bar{e}\gamma_{\mu}P_{L}e\right)\right]$$
(3)

- Las nuevas INE se parametrizan vía: $\epsilon_{\alpha\beta I}$, $\epsilon_{\alpha\beta R}$
- Nosotros estudiamos $\alpha = \beta$ (Interacciones del tipo no-universal)
- G_F es la constante de Fermi
- P_L, P_R son los proyectores de helicidad

Con las INE, la sección eficaz es:

$$\frac{d\sigma(E_{\nu}, T)}{dT} = \frac{2G_{F}^{2}m_{e}}{\pi} \left[\left(\tilde{g_{L}}^{2} + \sum_{\alpha \neq \beta} |\epsilon_{\alpha\beta L}|^{2} \right) + \left(\tilde{g_{R}}^{2} + \sum_{\alpha \neq \beta} |\epsilon_{\alpha\beta L}|^{2} \right) \left(1 - \frac{T}{E_{\nu}} \right)^{2} - \left(\tilde{g_{L}}\tilde{g_{R}} + \sum_{\alpha \neq \beta} |\epsilon_{\alpha\beta L}| |\epsilon_{\alpha\beta R}| \right) m_{e} \frac{T}{E_{\nu}^{2}} \right].$$
(4)

Y el número de eventos (en el caso de Super-Kamiokande) el

$$\mathcal{N}_{ev} = time\phi_B N_e \int_0 \int_{T_i} c(T)\lambda(E_{\nu})R(T, T') \times$$

$$P\left(\tan\theta^2, \frac{\delta m^2}{\epsilon C}\right) \frac{d\sigma_{\nu e}e}{dT} + \left(1 - P\left(\tan^2\theta \frac{\delta m^2}{\epsilon C}\right) \frac{d\sigma_{\nu l}e}{dT}\right) dT' dT dE_{\nu}$$
(5)

En el número de eventos hemos considerado las correcciones radiativa

$$\begin{split} \frac{d\sigma}{dT} &= \frac{2G_F^2 m}{\pi} g_L^2(T) [1 + \frac{\alpha}{\pi} f_-(z)] + g_R^2(T) (1-z)^2 [1 + \frac{\alpha}{\pi} f_+(z)] \\ &- g_R(T) g_L(T) \frac{m}{q} z [1 + \frac{\alpha}{\pi} f_{+-}(z)] \end{split}$$

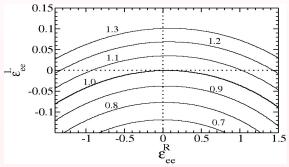
Con las INE, la sección eficaz es:

$$\frac{d\sigma(E_{\nu}, T)}{dT} = \frac{2G_{F}^{2}m_{e}}{\pi} \left[\left(\tilde{g_{L}}^{2} + \sum_{\alpha \neq \beta} |\epsilon_{\alpha\beta L}|^{2} \right) + \left(\tilde{g_{R}}^{2} + \sum_{\alpha \neq \beta} |\epsilon_{\alpha\beta L}|^{2} \right) \left(1 - \frac{T}{E_{\nu}} \right)^{2} - \left(\tilde{g_{L}}\tilde{g_{R}} + \sum_{\alpha \neq \beta} |\epsilon_{\alpha\beta L}| |\epsilon_{\alpha\beta R}| \right) m_{e} \frac{T}{E_{\nu}^{2}} \right].$$
(4)

Y el número de eventos (en el caso de Super-Kamiokande) es:

$$\mathcal{N}_{\mathsf{ev}} = time\phi_{B} N_{\mathsf{e}} \int_{0}^{T_{m}\mathsf{ax}} \int_{T_{i}}^{T_{i}+1} c(T) \lambda(\mathsf{E}_{\nu}) R(T,T') \times$$

$$P\left(\tan\theta^{2}, \frac{\delta m^{2}}{4E_{\nu}}\right) \frac{d\sigma_{\nu e^{e}}}{dT} + \left(1 - P\left(\tan^{2}\theta \frac{\delta m^{2}}{4E_{\nu}}\right) \frac{d\sigma_{\nu le}}{dT}\right) dT' dT dE_{\nu}$$
 (5)


En el número de eventos hemos considerado las correcciones radiativas

$$\frac{d\sigma}{dT} = \frac{2G_F^2 m}{\pi} g_L^2(T) [1 + \frac{\alpha}{\pi} f_-(z)] + g_R^2(T) (1 - z)^2 [1 + \frac{\alpha}{\pi} f_+(z)] - g_R(T) g_L(T) \frac{m}{q} z [1 + \frac{\alpha}{\pi} f_+(z)]$$

Número de eventos

Para tener una idea preliminar sobre la sensitividad que tiene el detector SK hemos graficadola sección eficaz ν – e integrada, variando los parámetros no estándar en el intervalo de [-1.5, 1.5] para ϵ_R y [-0.15, 0.15] para ϵ_L .

INE en la propagación

En la base de sabor, la evolución de los neutrinos es:

$$H = H_{cin} + H_{MSW} + H_{INE} \tag{7}$$

 H_{MSW} es el Hamiltoniano que contien la parte del efecto MSW y las interacciones No-Estándar estándar estan contenidas en H_{INE} de la siguiente manera:

$$\mathcal{H}_{MSW} = \begin{bmatrix} +\sqrt{2}G_F N_e(r) - \frac{\Delta m^2}{4E}\cos 2\theta & \frac{\Delta m^2}{4E}\sin 2\theta \\ \frac{\Delta m^2}{4E}\sin 2\theta & \frac{\Delta m^2}{4E}\cos 2\theta \end{bmatrix}$$

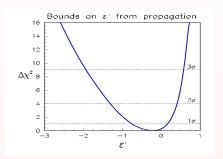
у

$$\mathcal{H}_{NSNI} = \begin{bmatrix} 0 & \sqrt{2}G_F \epsilon N_f(r) \\ \sqrt{2}G_F \epsilon N_f(r) & \sqrt{2}G_F \epsilon' N_f(r) \end{bmatrix}$$

En el Hamiltoniano anterior las INE son las siguientes:

$$\epsilon = -\sin\theta_{23} \, \epsilon_{e\tau}^{V} \qquad \epsilon' = \sin^2\theta_{23} \, \epsilon_{\tau\tau}^{V} - \epsilon_{ee}^{V}$$
 (8)

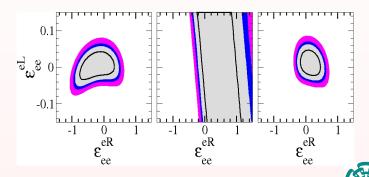
Puesto que las INE no Universales son diagonales, la probabilidad de sobrevivencia de ν_e es la siguiente:


$$\mathcal{P}_{ee} = \frac{1}{2} (1 + \cos 2\tilde{\theta}_{12}(x_o) \cos 2\theta_{12}) \tag{9}$$

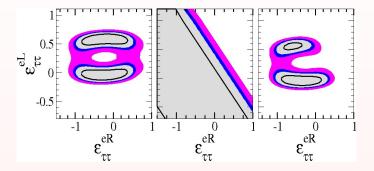
 $\tilde{\theta}_{12}(x_o)$ es el ángulo de mezcla en materia:

$$\tilde{\theta}_{12}(x_o) = \frac{\cos \theta_{12}(x_0) - \frac{V(x_0)}{k}}{\sqrt{(\cos(2\theta_{12} - \frac{V(x_0)}{k})^2)) + \sin 2\theta_{12}^2}}$$

Cotas al parámetro ϵ' al combinar datos solares con KamLAND



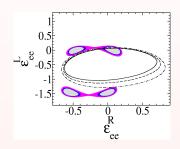
AB et al arxiv:0812.4417


Nuestro Resultado final!

Cotas a las INE del ν_e

Panel Izquierdo:INE en detección, Panel central:INE en propagación

Cotas a las INE del $\nu_{ au}$



Panel Izquierdo:INE en detección, Panel central:INE en propagación

Comparando con otros resultados de reactores

	90% C.L. Allowed Region	One parameter	Previous limits
ε_{ee}^{L}	$-0.14 < \varepsilon_{ee}^{L} < 0.09$	$-0.03 < \varepsilon_{ee}^{L} < 0.08$	$-0.05 < \varepsilon_{ee}^{L} < 0.1$
ε_{ee}^{E}	$-0.03 < arepsilon_{ee}^{R} < 0.18$	$0.004 < \varepsilon_{ee}^{R} < 0.15$	$0.04 < \varepsilon_{ee}^{R} < 0.14$

Con ayuda de todos los datos de neutrinos solares, especialmente Super-Kamiokande, obtuvimos cotas a los parámetros INE que son complementarias a los resultados de laboratorio. Especialmente los acoplamientos a los parámetros izquierdos son mejores.

Física de no-partículas y neutrinos de reactores

- Hay un sector de la teoría (una teoría efectiva)(ME)que aún no ha sido descubierto y que intercatúa débilmente con el resto de la teoría
 - H.Georgi, 2007
- La física de este sector no se decribe con partículas, es por eso que a sus elementos se les llama no-partículas (unparticle) unparticle stuff
- La existencia de este sector nos llevaría a descubrimientos muy interesantes de nueva Física

Los operadores Banks Zaks \mathcal{O}_{BZ} y los operadores del Modelo Estándar \mathcal{O}_{SM} interactúan a travéz del intercambio de partículas de dimensiones de escala: \mathcal{M}_u^k

$$\frac{1}{\mathcal{M}_{\mathcal{U}}^{k}}\mathcal{O}_{BZ}\mathcal{O}_{SM},\tag{11}$$

Donde \mathcal{O}_{BZ} y los operadores del ME tiene dimensiones d_{BZ} y d_{SM} respectivamente.

• Las interacciones dependen de la dimensión del operador y del tipo de interacción; escalar, vectorial, etc...

En una teoría efectiva, sobre una escala $\Lambda_{\mathcal{U}}$, tenemos los operadores unparticle

$$\frac{C_{\mathcal{U}}\Lambda_{\mathcal{U}}^{d_{bZ}} - d_{\mathcal{U}}}{\mathcal{M}_{\mathcal{U}}^{k}} \tag{12}$$

donde $d_{\mathcal{U}}$ es la dimensión de este operador $\mathcal{O}_{\mathcal{U}}$, se asume que el operador $\mathcal{O}_{\mathcal{U}}$ es el operador de dimensión más baja posible.

La sección eficaz estándar en el caso de anti-neutrino del electrón-electrón es:

$$\frac{d\sigma}{dT} = \frac{G_F^2 m_e}{2\pi} \left[(g_V + g_A)^2 + (g_V - g_A)^2 \left(1 - \frac{T}{E_\nu} \right)^2 + [g_A^2 - g_V^2] \frac{m_e T}{E_\nu} \right],$$
(13)

donde T es la energía de retroceso del electrón, $g_V = 2\sin^2\theta_W + \frac{1}{2}$, $g_A = \frac{1}{2}$ for ν_e , $g_A = -\frac{1}{2}$ for $\bar{\nu}_e$.

En los experimentos a bajas energías de dispersón elástica antineutrino-electrón-electrón, se busca un exeso en la sección eficaz, lo cual es un indicio de nueva física

Interacción Unparticle tipo escalar

A partir de la amplitud de dispersión para el caso escalar tenemos:

$$M_{u} = \frac{f(d)}{\Lambda_{U}^{2d-2}} \{ \bar{\nu}_{\beta}(k') \nu_{\alpha}(k) \} [-q^{2} - i\epsilon]^{d-2} \{ \bar{e}(p') e(p) \}$$
 (14)

La contribución unparticle a la sección diferencial $\bar{\nu}e$ debida a una interacción escalar es de la forma:

$$\frac{d\sigma}{dT} = \frac{f(d)^2 (2)^{2d-6}}{\pi E_{\nu}^2 \Lambda_u^{4d-4}} (m_e T)^{(2d-3)} (T + 2m_e)$$
 (15)

con:

$$f(d) = \frac{\lambda_{0\nu}^{\alpha\beta}\lambda_{0e}A_d}{2\sin d\pi}$$

Interacción Unparticle tipo vectorial

У

$$A_d = \frac{16\pi^{\frac{5}{2}}\Gamma(d + \frac{1}{2})}{2\pi^{(2d)}\Gamma(d - 1)\Gamma(2d)}$$
(17)

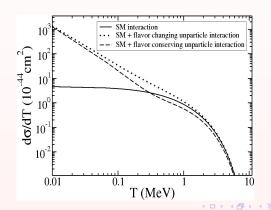
En el caso del intercambio de una unparticle vectorial:

$$\frac{d\sigma}{dT} = \frac{f(d)^2(2)^{2d-5}}{\pi \Lambda_u^{4d-4}} (m_e)^{(2d-3)} (T)^{(2d-4)} (1 + (1 - \frac{T}{E_\nu})^2 - \frac{m_e T}{E_\nu^2})$$
(18)

Dispersión neutrino núcleo

Interacción escalar:

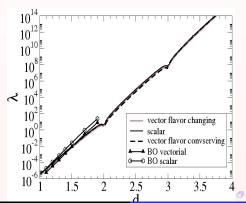
$$rac{d\sigma_{\mathcal{U}_{S}}^{
u N}}{dT} = rac{1}{\Lambda^{(4d-4)}} rac{2^{(2d-6)}}{\pi E_{
u}^{2}} *$$

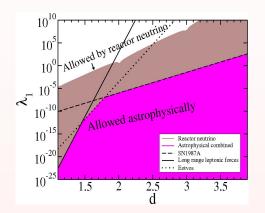

$$[g_{0u}(d)(2Z+N)+g_{0d}(d)(Z+2N)]^2(m_AT)^{(2d-3)}(T+2m_A)$$
 (19)

T es la energía de retroceso del núcleo, Z y N son el número de protones y neutrones respectivamente del núcleo blanco del detector, A es el número de masa A = Z + N.

La Interacción vectorial:

$$\frac{d\sigma_{U_V}^{\nu N}}{dT} = \frac{2^{(2d-5)}}{\pi \Lambda^{(4d-4)}} m_A(m_A T)^{(2d-4)} \left[g_{1u}(d)(2Z+N) + g_{1d}(d)(Z+2N) \right]^2 \times \left[1 + \left(1 - \frac{T}{E_{\nu}} \right)^2 - \frac{m_A T}{E_{\nu}^2} \right].$$


Nuestro resultado


Nuestro resultado

Para el experimento MUNU: caso escalar, vectorial...

Cotas actuales a los acoplamientos unparticle λ_1 y d

Cotas actuales a los acoplamientos unparticle λ_1 provenientes de dispersión neutrino-electrón y de límites astrofísicos

d	ν - e scattering	$E\ddot{o}tv\ddot{o}s$	Long range	SN1987A	Solar ν's
1.1	2.0×10^{-5}	6.3×10^{-19}	2.8×10^{-23}	9.1×10^{-11}	1.1×10^{-5}
1.25	1.9×10^{-4}	1.6×10^{-16}	5.2×10^{-19}	4.0×10^{-10}	1.2×10^{-4}
1.5	9.7×10^{-3}	1.7×10^{-12}	5.7×10^{-12}	5.7×10^{-9}	7.3×10^{-3}
1.75	3.7×10^{-1}	2.6×10^{-8}	6.1×10^{-5}	7.4×10^{-8}	3.4×10^{-1}
2.1	40.	1.1×10^{-2}	6.0×10^{5}	2.9×10^{-6}	100.
2.25	713	4.2	1.0×10^{10}	1.3×10^{-5}	1127.
2.5	5.5×10^{4}	4.8×10^{4}	1.1×10^{17}	1.8×10^{-4}	6.6×10^{4}
2.75	2.9×10^{6}	5.5×10^{8}	1.8×10^{24}	2.3×10^{-3}	3.5×10^{6}
3.1	1.2×10^{9}	3.3×10^{14}	1.1×10^{34}	9.9×10^{-2}	1.0×10^{9}
3.25	2.3×10^{10}	9.6×10^{16}	3.1×10^{38}	4.7×10^{-1}	1.1×10^{10}
3.5	2.1×10^{12}	1.5×10^{21}	3.2×10^{45}	6.1	6.7×10^{11}
3.75	1.1×10^{14}	1.9×10^{25}	3.3×10^{52}	87.2	3.5×10^{13}
3.9	1.1×10^{15}	6.2×10^{27}	5.8×10^{56}	414.3	4.0×10^{14}

- Hemos estudiado y analizado las INE del tipo NU en el caso de interacciones del electrón con neutrino del electrón y neutrino del tau
- Para tener un análisis completo tomamos en cuenta los datos del detector Super-Kamiokande, SNO, GALLEX, SAGE, Cloro y KamLAND
- Hemos obtenido un análisis muy robusto. Este problema no había sido abordado de esta manera

- Hemos estudiado y analizado las INE del tipo NU en el caso de interacciones del electrón con neutrino del electrón y neutrino del tau
- Para tener un análisis completo tomamos en cuenta los datos del detector Super-Kamiokande, SNO, GALLEX, SAGE, Cloro y KamLAND
- Hemos obtenido un análisis muy robusto. Este problema no había sido abordado de esta manera

- Hemos estudiado y analizado las INE del tipo NU en el caso de interacciones del electrón con neutrino del electrón y neutrino del tau
- Para tener un análisis completo tomamos en cuenta los datos del detector Super-Kamiokande, SNO, GALLEX, SAGE, Cloro y KamLAND
- Hemos obtenido un análisis muy robusto. Este problema no había sido abordado de esta manera

- Hemos estudiado y analizado las INE del tipo NU en el caso de interacciones del electrón con neutrino del electrón y neutrino del tau
- Para tener un análisis completo tomamos en cuenta los datos del detector Super-Kamiokande, SNO, GALLEX, SAGE, Cloro y KamLAND
- Hemos obtenido un análisis muy robusto. Este problema no había sido abordado de esta manera

- La física de neutrinos es un buen marco para estudiar la Física de no-partículas
- Hemos obtenido una buena concordancia con resultados previos (Balantekin) e incluso hemos realizado mejoras como calcular la dispersión neutrino-núcleo
- Hemos obtenido cotas a los acoplamientos unparticle con neutrinos del electrón provenientes del experiemnto MUNU
- Si Unparticle Physics se descubre, ya sea mediante efectos virtuales
 - o producción directa sería un hallazgo SORPRENDENTI

- La física de neutrinos es un buen marco para estudiar la Física de no-partículas
- Hemos obtenido una buena concordancia con resultados previos (Balantekin) e incluso hemos realizado mejoras como calcular la dispersión neutrino-núcleo
- Hemos obtenido cotas a los acoplamientos unparticle con neutrinos del electrón provenientes del experiemnto MUNU
- Si Unparticle Physics se descubre, ya sea mediante efecto virtuales
 o producción directa sería un hallazgo SORPRENDENTE

- La física de neutrinos es un buen marco para estudiar la Física de no-partículas
- Hemos obtenido una buena concordancia con resultados previos (Balantekin) e incluso hemos realizado mejoras como calcular la dispersión neutrino-núcleo
- Hemos obtenido cotas a los acoplamientos unparticle con neutrinos del electrón provenientes del experiemnto MUNU
- Si Unparticle Physics se descubre, ya sea mediante efectos virtuales
 - o producción directa sería un hallazgo SORPRENDENTE

- La física de neutrinos es un buen marco para estudiar la Física de no-partículas
- Hemos obtenido una buena concordancia con resultados previos (Balantekin) e incluso hemos realizado mejoras como calcular la dispersión neutrino-núcleo
- Hemos obtenido cotas a los acoplamientos unparticle con neutrinos del electrón provenientes del experiemnto MUNU
- Si Unparticle Physics se descubre, ya sea mediante efectos virtuales
 - o producción directa sería un hallazgo SORPRENDENTE.

