Flavor Symmetry and Neutrino Physics

Newton Nath

April - 12, 2021
Mexico City

Neutrino Mass:

Tiny Neutrino mass: a long standing issue.

Cont...

Type-I seesaw

[Minkowski'77, Yanagida'79, Gell-Mann/Slansky/Ramond'79, Mohapatra/Senjanovic'80, Schecter/Valle' 80]

Cont...

- The low energy Majorana neutrino mass matrix:

$$
m_{\nu}=\left(\begin{array}{ccc}
m_{e e} & m_{e \mu} & m_{e \tau} \\
* & m_{\mu \mu} & m_{\mu \tau} \\
* & * & m_{\tau \tau}
\end{array}\right)
$$

- \# of free parameters: 12
- The complex symmetric mass matrix m_{ν} can be diagonalized as:

$$
m_{\nu}=V M_{\nu}^{\operatorname{diag}} V^{\top} ; \quad M_{\nu}^{\text {diag }}=\operatorname{Diag}\left\{m_{1}, m_{2}, m_{3}\right\}
$$

- The neutrino mixing matrix V is parameterized as

$$
\begin{aligned}
V & \equiv U P, \\
& =\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \alpha} & 0 \\
0 & 0 & e^{i(\beta+\delta)}
\end{array}\right) ;
\end{aligned}
$$

- V is called as Pontecorvo-Maki-Nakagawa-Sakata matrix
- \# of observables from neutrino oscillations experiments:
$\Delta m_{21}^{2},\left|\Delta m_{31}^{2}\right|, \theta_{13}, \theta_{12}, \theta_{23}$, and δ

Cont...

- The low energy Majorana neutrino mass matrix:

$$
m_{\nu}=\left(\begin{array}{ccc}
m_{e e} & m_{e \mu} & m_{e \tau} \\
* & m_{\mu \mu} & m_{\mu \tau} \\
* & * & m_{\tau \tau}
\end{array}\right) ;
$$

- \# of free parameters: 12
- The complex symmetric mass matrix m_{ν} can be diagonalized as:

$$
m_{\nu}=V M_{\nu}^{\text {diag }} V^{T} ; \quad M_{\nu}^{\text {diag }}=\operatorname{Diag}\left\{m_{1}, m_{2}, m_{3}\right\}
$$

- The neutrino mixing matrix V is parameterized as

$$
\begin{aligned}
V & \equiv U P, \\
& =\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \alpha} & 0 \\
0 & 0 & e^{i(\beta+\delta)}
\end{array}\right) ;
\end{aligned}
$$

- V is called as Pontecorvo-Maki-Nakagawa-Sakata matrix
- \# of observables from neutrino oscillations experiments:
$\Delta m_{21}^{2},\left|\Delta m_{31}^{2}\right|, \theta_{13}, \theta_{12}, \theta_{23}$, and δ
Mismatch in \# of parameters

Neutrino Mixings:

The PMNS matrix:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{23} & \sin \theta_{23} \\
0 & -\sin \theta_{23} & \cos \theta_{23}
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta_{13} & 0 & e^{-i \delta} \sin \theta_{13} \\
0 & 1 & 0 \\
-e^{i \delta} \sin \theta_{13} & 0 & \cos \theta_{13}
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta_{12} & \sin \theta_{12} & 0 \\
-\sin \theta_{12} & \cos \theta_{12} & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \text { Atmospheric, } \begin{array}{c}
\text { Reactor } \\
\text { Solar }
\end{array} \\
& \text { K2K, MINOS, T2K, etc. } \quad \text { Accelerator }
\end{aligned}
$$

- 3-mixing angles, 1 CP-phase.

Neutrino Mixings:

The PMNS matrix:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{23} & \sin \theta_{23} \\
0 & -\sin \theta_{23} & \cos \theta_{23}
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta_{13} & 0 & e^{-i \delta} \sin \theta_{13} \\
0 & 1 & 0 \\
-e^{i \delta} \sin \theta_{13} & 0 & \cos \theta_{13}
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta_{12} & \sin \theta_{12} & 0 \\
-\sin \theta_{12} & \cos \theta_{12} & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \text { Atmospheric, } \begin{array}{c}
\text { Reactor } \\
\text { Solar }
\end{array} \\
& \text { K2K, MINOS, T2K, etc. } \quad \text { Accelerator }
\end{aligned}
$$

- 3-mixing angles, 1 CP-phase.
- 2-additional Majorana phases.

Neutrino Mixings:

The PMNS matrix:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{23} & \sin \theta_{23} \\
0 & -\sin \theta_{23} & \cos \theta_{23}
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta_{13} & 0 & e^{-i \delta} \sin \theta_{13} \\
0 & 1 & 0 \\
-e^{i \delta} \sin \theta_{13} & 0 & \cos \theta_{13}
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta_{12} & \sin \theta_{12} & 0 \\
-\sin \theta_{12} & \cos \theta_{12} & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \text { Atmospheric, } \begin{array}{c}
\text { Reactor }
\end{array} \text { Solar } \\
& \text { K2K, MINOS, T2K, etc. } \quad \text { Accelerator }
\end{aligned}
$$

- 3-mixing angles, 1 CP-phase.
- 2-additional Majorana phases.

Is this the only parameterization?

Neutrino Mixings:
 The PMNS matrix:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{23} & \sin \theta_{23} \\
0 & -\sin \theta_{23} & \cos \theta_{23}
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta_{13} & 0 & e^{-i \delta} \sin \theta_{13} \\
0 & 1 & 0 \\
-e^{i \delta} \sin \theta_{13} & 0 & \cos \theta_{13}
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta_{12} & \sin \theta_{12} & 0 \\
-\sin \theta_{12} & \cos \theta_{12} & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \text { Atmospheric, } \begin{array}{c}
\text { Reactor } \\
\text { Solar }
\end{array} \\
& \text { K2K, MINOS, T2K, etc. } \quad \text { Accelerator }
\end{aligned}
$$

- 3-mixing angles, 1 CP-phase.
- 2-additional Majorana phases.

Is this the only parameterization?

* There are total nine-ways to parameterize V

Fritzsch, Xing, PRD57 (1998) 594-597

Example: $R\left(\theta_{12}\right) R\left(\theta_{23}, \delta\right), R^{-1}\left(\vartheta_{12}\right)$, and 8 more

Cont...

Cont...

Why is this flavor structure?
[Xing, PR854 (2020) 1-147, arXiv: 1909.09610]

Cont...

Why is this flavor structure?
[Xing, PR854 (2020) 1-147, arXiv: 1909.09610]

Theoretical approaches

- texture zeros,
- flavor symmetries,
- seesaw mechanisms,
- radiative mechanisms,
- extra dimensions, etc...

$$
m_{\nu}=\left(\begin{array}{ccc}
m_{e e} & m_{e \mu} & m_{e \tau} \\
* & m_{\mu \mu} & m_{\mu \tau} \\
* & * & m_{\tau \tau}
\end{array}\right)
$$

Current Status:

parameter	best fit $\pm 1 \sigma$	2σ range	3σ range
$\Delta m_{21}^{2}\left[10^{-5} \mathrm{eV}^{2}\right]$	$7.50_{-0.20}^{+0.22}$	$7.12-7.93$	$6.94-8.14$
$\left\|\Delta m_{31}^{2}\right\|\left[10^{-3} \mathrm{eV}^{2}\right](\mathrm{NO})$	$2.55_{-0.03}^{+0.02}$	$2.49-2.60$	$2.47-2.63$
$\left\|\Delta m_{31}^{2}\right\|\left[10^{-3} \mathrm{eV}^{2}\right](\mathrm{IO})$	$2.45_{-0.03}^{+0.02}$	$2.39-2.50$	$2.37-2.53$
$\sin ^{2} \theta_{12} / 10^{-1}$	3.18 ± 0.16	$2.86-3.52$	$2.71-3.69$
$\theta_{12} /{ }^{\circ}$	34.3 ± 1.0	$32.3-36.4$	$31.4-37.4$
$\sin ^{2} \theta_{23} / 10^{-1}(\mathrm{NO})$	5.74 ± 0.14	$5.41-5.99$	$4.34-6.10$
$\theta_{23} /{ }^{\circ}(\mathrm{NO})$	49.26 ± 0.79	$47.37-50.71$	$41.20-51.33$
$\sin ^{2} \theta_{23} / 10^{-1}(\mathrm{IO})$	$5.78_{-0.17}^{+0.10}$	$5.41-5.98$	$4.33-6.08$
$\theta_{23} /{ }^{\circ}(\mathrm{IO})$	$49.46_{-0.97}^{+0.60}$	$47.35-50.67$	$41.16-51.25$
$\sin ^{2} \theta_{13} / 10^{-2}(\mathrm{NO})$	$2.200_{-0.062}^{+0.069}$	$2.069-2.337$	$2.000-2.405$
$\theta_{13} /{ }^{\circ}(\mathrm{NO})$	$8.53_{-0.12}^{+0.13}$	$8.27-8.79$	$8.13-8.92$
$\sin ^{2} \theta_{13} / 10^{-2}(\mathrm{IO})$	$2.225_{-0.064}^{+0.060}$	$2.086-2.356$	$2.018-2.424$
$\theta_{13} /{ }^{\circ}(\mathrm{IO})$	$8.58_{-0.14}^{+0.12}$	$8.30-8.83$	$8.17-8.96$
$\delta / \pi(\mathrm{NO})$	$1.08_{-0.12}^{+0.13}$	$0.84-1.42$	$0.71-1.99$
$\delta /{ }^{\circ}(\mathrm{NO})$	194_{-22}^{+24}	$152-255$	$128-359$
$\delta / \pi(\mathrm{IO})$	$1.58_{-0.16}^{+0.15}$	$1.26-1.85$	$1.11-1.96$
$\delta /{ }^{\circ}(\mathrm{IO})$	284_{-28}^{+26}	$226-332$	$200-353$

- Preference for NO at 2.5σ.
- Best-fit of θ_{23} favors HO for both NO and IO.
de Salas et. al. arXiv:2006.11237
- $\theta_{13}=0$ is excluded at more than 5σ.

$\mu-\tau$ symmetry:

First seed:

- Fukuyama, Nishiura proposed $\mu-\tau$ symmetry in the M_{ν},

$$
M_{\nu}=\left(\begin{array}{ccc}
0 & B & \pm B \\
B & C & D \\
\pm B & D & C
\end{array}\right)
$$

where $A, B, C \in \mathcal{R}$.
arXiv:hep-ph/9702253 \& 1701.04985, (PTEP 2017)

- Diagonalization of $M_{\nu} \Rightarrow \theta_{23}=\mp 45^{\circ}$ and $\theta_{13}=0^{\circ}$
- $\left(M_{\nu}\right)_{11}=0 \Rightarrow$ small θ_{12}, which had survived with the large mixing angle solution at that time
- Later, the KamLAND Collaboration, selected the larger part of solar neutrino angles
- An immediate generalization is to introduce parameter A in the (1,1)-entry for large θ_{12}

Tri-Bi-Maximal Mixing:

- Before Daya-Bay results, [PRL'13]: M_{ν} looks as

$$
\mathbf{M}_{\nu}=\left(\begin{array}{ccc}
A & B & \pm B \\
B & C & D \\
\pm B & D & C
\end{array}\right)
$$

- M_{ν} is unchanged under

$$
\nu_{\mathrm{e}} \leftrightarrow \nu_{\mathrm{e}}, \quad \nu_{\mu} \leftrightarrow \nu_{\tau}, \quad \nu_{\tau} \leftrightarrow \nu_{\mu} .
$$

- M_{ν} can be diagonalized by

$$
\mathbf{U}_{\mathrm{TBM}}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & \sqrt{1 / 3} & 0 \\
-\sqrt{1 / 3} & \sqrt{1 / 3} & -\sqrt{1 / 2} \\
-\sqrt{1 / 3} & \sqrt{1 / 3} & \sqrt{1 / 2}
\end{array}\right)
$$

- $U_{\text {TBM }}$ was 1st proposed by Harrison, Perkins \& Scott arXiv:hep-ph/0202074, PLB530 (2002)
- $U_{T B M} \Rightarrow \quad \sin \theta_{12}=\frac{1}{\sqrt{3}} \Rightarrow$ 'trimaximal mixing',

$$
\sin \theta_{23}=\frac{1}{\sqrt{2}} \Rightarrow \text { 'bimaximal mixing' \& } \theta_{13}=0^{\circ} .
$$

$\mu-\tau$ reflection symmetry

> Originally proposed by Harrison \& Scott, PLB547 (2002)

- M_{ν} is unchanged under:

$$
\nu_{e} \leftrightarrow \nu_{e}^{c}, \quad \nu_{\mu} \leftrightarrow \nu_{\tau}^{c} \quad \nu_{\tau} \leftrightarrow \nu_{\mu}^{c} .
$$

where,

$$
M_{\nu}=\left(\begin{array}{ccc}
D & A & A^{*} \\
A & B & C \\
A^{*} & C & B^{*}
\end{array}\right) \quad \& M_{\nu} M_{\nu}^{\dagger}=\left(\begin{array}{ccc}
z & w & w^{*} \\
w^{*} & x & y \\
w & y^{*} & x
\end{array}\right) \text {. }
$$

where $\mathrm{C}, \mathrm{D}, \mathrm{x}, \mathrm{z} \in \mathbb{R} \& \mathrm{~A}, \mathrm{~B}, \mathrm{w}, \mathrm{y} \in \mathbb{C}$

$\mu-\tau$ reflection symmetry

Originally proposed by Harrison \& Scott, PLB547 (2002)

- M_{ν} is unchanged under:

$$
\nu_{e} \leftrightarrow \nu_{e}^{c}, \quad \nu_{\mu} \leftrightarrow \nu_{\tau}^{c} \quad \nu_{\tau} \leftrightarrow \nu_{\mu}^{c} .
$$

where,

$$
M_{\nu}=\left(\begin{array}{ccc}
D & A & A^{*} \\
A & B & C \\
A^{*} & C & B^{*}
\end{array}\right) \quad \& M_{\nu} M_{\nu}^{\dagger}=\left(\begin{array}{ccc}
z & w & w^{*} \\
w^{*} & x & y \\
w & y^{*} & x
\end{array}\right) \text {. }
$$

where $\mathrm{C}, \mathrm{D}, \mathrm{x}, \mathrm{z} \in \mathbb{R} \& \mathrm{~A}, \mathrm{~B}, \mathrm{w}, \mathrm{y} \in \mathbb{C}$

- M_{ν} respects, $X^{T} M_{\nu} X=M_{\nu}^{*}$ with
- M_{ν} can be diagonalized by

$$
X=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

$$
U=\left(\begin{array}{lll}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
v_{1}^{*} & v_{2}^{*} & v_{3}^{*}
\end{array}\right) \Rightarrow\left|U_{\mu i}\right|=\left|U_{\tau i}\right|, i=1,2,3
$$

$\mu-\tau$ reflection symmetry

Originally proposed by Harrison \& Scott, PLB547 (2002)

- M_{ν} is unchanged under:

$$
\nu_{e} \leftrightarrow \nu_{e}^{c}, \quad \nu_{\mu} \leftrightarrow \nu_{\tau}^{c} \quad \nu_{\tau} \leftrightarrow \nu_{\mu}^{c} .
$$

where,

$$
M_{\nu}=\left(\begin{array}{ccc}
D & A & A^{*} \\
A & B & C \\
A^{*} & C & B^{*}
\end{array}\right) \quad \& M_{\nu} M_{\nu}^{\dagger}=\left(\begin{array}{ccc}
z & w & w^{*} \\
w^{*} & x & y \\
w & y^{*} & x
\end{array}\right) \text {. }
$$

where $\mathrm{C}, \mathrm{D}, \mathrm{x}, \mathrm{z} \in \mathbb{R} \& \mathrm{~A}, \mathrm{~B}, \mathrm{w}, \mathrm{y} \in \mathbb{C}$

- M_{ν} respects, $X^{T} M_{\nu} X=M_{\nu}^{*}$ with

$$
X=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

- M_{ν} can be diagonalized by

$$
U=\left(\begin{array}{lll}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
v_{1}^{*} & v_{2}^{*} & v_{3}^{*}
\end{array}\right) \Rightarrow\left|U_{\mu i}\right|=\left|U_{\tau i}\right|, i=1,2,3
$$

- 2-important predictions: $\theta_{23}=\pi / 4, s_{13} \cos \delta=0 \Rightarrow \delta= \pm \pi / 2$ for $\theta_{13} \neq 0$

$\mu-\tau$ reflection symmetry and minimal seesaw:

- Minimal seesaw: $\mathrm{SM}+2$ right-handed neutrinos
$\Rightarrow m_{\text {light }}=0$ (still allowed by latest data).
- Helps to address both the ν-mass \& mixing patterns.
- We assume,

$$
\nu_{\mathrm{L}} \rightarrow \mathbf{S} \nu_{\mathrm{L}}^{\mathrm{c}}, \quad \mathbf{N}_{\mathrm{R}} \rightarrow \mathbf{S}^{\prime} \mathbf{N}_{\mathrm{R}}^{\mathrm{c}}
$$

where $\nu_{L}^{c}=C{\overline{\nu_{L}}}^{T}$ and $N_{R}^{c}=C{\overline{N_{R}}}^{T}$ and

$$
\mathbf{S}=\left(\begin{array}{cc}
1 & 0 \\
0 & S^{\prime}
\end{array}\right), \quad \mathbf{S}^{\prime}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

- M_{D}, M_{R} obey,

$$
M_{D}=S M_{D}^{*} S^{\prime}, \quad M_{R}=S^{\prime} M_{R}^{*} S^{\prime}
$$

- One gets,

$$
M_{D}=\left(\begin{array}{cc}
|b| e^{i \phi_{b}} & |b| e^{-i \phi_{b}} \\
|c| e^{i \phi_{c}} & |d| e^{i \phi_{d}} \\
|d| e^{-i \phi_{d}} & |c| e^{-i \phi_{c}}
\end{array}\right), M_{R}=\left(\begin{array}{cc}
\left|m_{22}\right| e^{i \phi_{m}} & m_{23} \\
m_{23} & \left|m_{22}\right| e^{-i \phi_{m}}
\end{array}\right) \text {, }
$$

Cont...

- In type-I seesaw,

$$
-\mathbf{M}_{\nu}=\mathbf{M}_{\mathrm{D}} \mathbf{M}_{\mathrm{R}}^{-1} \mathbf{M}_{\mathrm{D}}^{\top}=\left(\begin{array}{ccc}
A & B & B^{*} \\
B & C & D \\
B^{*} & D & C^{*}
\end{array}\right)
$$

- M_{ν} can be diagonalized by,

$$
V=P_{l}\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-\mathrm{i} \delta} \\
-s_{12} c_{23}-c_{12} s_{13} s_{23} e^{\mathrm{i} \delta} & c_{12} c_{23}-s_{12} s_{13} s_{23} \mathrm{e}^{\mathrm{i} \delta} & c_{13} s_{23} \\
s_{12} s_{23}-c_{12} s_{13} c_{23} \mathrm{e}^{\mathrm{i} \delta} & -c_{12} s_{23}-s_{12} s_{13} c_{23} \mathrm{e}^{\mathrm{i} \delta} & c_{13} c_{23}
\end{array}\right) P_{\nu}
$$

where $P_{I}=\operatorname{diag}\left(e^{i \phi_{e}}, e^{i \phi_{\mu}}, e^{i \phi_{\tau}}\right)$ and $P_{\nu}=\operatorname{diag}\left(1, e^{i \rho}, e^{i \sigma}\right)$.

- 6-predictions:

$$
\phi_{\mathbf{e}}=9 \mathbf{0}^{\circ}, \quad \phi_{\mu} \equiv-\phi_{\tau}=\phi, \quad \theta_{23}=45^{\circ}, \quad \delta= \pm \mathbf{9 0 ^ { \circ }}, \quad \rho, \sigma=\mathbf{0} \text { or } \mathbf{9 0}^{\circ} .
$$

- Also,

$$
\begin{aligned}
\tan \theta_{13} & =\mp \frac{1}{\sqrt{2}} \frac{\operatorname{Im}\left(C^{\prime}\right)}{\operatorname{Im}\left(B^{\prime}\right)} \quad\left(C^{\prime}=C e^{-2 i \phi}, B^{\prime}=B e^{-i \phi}\right), \\
\tan 2 \theta_{12} & =\frac{2 \sqrt{2} \cos 2 \theta_{13} \operatorname{Im}\left(B^{\prime}\right)}{C_{13}\left[\left(\operatorname{Re}\left(C^{\prime}\right)-D\right) \cos 2 \theta_{13}-\left(\operatorname{Re}\left(C^{\prime}\right)+D\right) s_{13}^{2}+A c_{13}^{2}\right]} ; \text { for } \mathrm{NH}
\end{aligned}
$$

- Excellent agreement with the latest data.

A different thoughts:

$\mu-\tau$ reflection symmetry: M_{ν} violates but H_{ν} respects.

$$
\begin{aligned}
& \text { Mu-Tau Symmetry } \nu_{\mu} \leftrightarrow \nu_{\tau}^{*} \\
& \text { Littlest mu-tau seesaw } \\
& M_{\nu}=m_{\mathrm{s}}\left(\begin{array}{ccc}
1 & 1 & 3 \\
1 & 1+11 \omega^{2} & 3+\omega^{2} \\
3 & 3+11 \omega^{2} & \begin{array}{c}
9+11 \omega^{2}
\end{array}
\end{array}\right) \quad \begin{array}{l}
\omega=e^{i 2 \pi / 3} \\
\text { unequal }
\end{array} \\
& H_{\nu}=M_{\nu}^{\dagger} M_{\nu}=11\left|m_{\mathrm{s}}\right|^{2}\left(\begin{array}{ccc}
1 & -1-2 i \sqrt{3} & 1-2 i \sqrt{3} \\
-1+2 i \sqrt{3} & 19 & 17+4 i \sqrt{3} \\
1+2 i \sqrt{3} & 17-4 i \sqrt{3} & 19
\end{array}\right) \text { equal }
\end{aligned}
$$

Cont...

Reminder: Best-fit preferences $\theta_{23}, \delta \Rightarrow$

$$
\begin{aligned}
& \left.\begin{array}{|c|ccc|}
\sin ^{2} \theta_{23} / 10^{-1}(\mathrm{NO}) & 5.74 \pm 0.14 & 5.41-5.99 & 4.34-6.10 \\
\theta_{23} /{ }^{\circ}(\mathrm{NO}) & 49.26 \pm 0.79 & 47.37-50.71 & 41.20-51.33 \\
\sin ^{2} \theta_{23} / 10^{-1}(\mathrm{IO}) & 5.78_{-0.17}^{+0.10} & 5.41-5.98 & 4.33-6.08 \\
\theta_{23} /{ }^{\circ}(\mathrm{IO}) & 49.46_{-0.97}^{+0.60} & 47.35-50.67 & 41.16-51.25
\end{array} \right\rvert\, \quad \text { LO or HO ? } \\
& \delta / \pi(\mathrm{NO}) \\
& \delta /{ }^{\circ} \text { (NO) } \\
& \delta / \pi \text { (IO) } \\
& \delta /{ }^{*} \text { (IO) } \\
& \text { CPV } \\
& \text { Looking for more realistic model }
\end{aligned}
$$

Cont...

Reminder: Best-fit preferences $\theta_{23}, \delta \Rightarrow$

$$
\begin{gathered}
\sin ^{2} \theta_{23} / 10^{-1}(\mathrm{NO}) \\
\theta_{23} /{ }^{\circ}(\mathrm{NO}) \\
\sin ^{2} \theta_{23} / 10^{-1}(\mathrm{IO}) \\
\theta_{23} /{ }^{\circ}(\mathrm{IO}) \\
\\
\delta / \pi(\mathrm{NO}) \\
\delta /{ }^{\circ}(\mathrm{NO}) \\
\delta / \pi(\mathrm{IO}) \\
\delta /{ }^{\circ}(\mathrm{IO})
\end{gathered}
$$

Looking for more realistic model

- Break $\mu-\tau$ reflection symmetry (RGE \& Explicit).
- Generalized CP symmetry.
- Bi-large ansatze.
- Tetra-maximal mixing.

Recent topics: Modular symmetries, littlest seesaw models, orbifold theory of flavor, tri-direct CP approaches etc...

Renormalization group running (RGE) effect:

- RGE effect works as a bridge between the high-energy predictions and the low-energy measurements.
- At the one-loop level, the energy dependence of M_{ν} is given by

$$
16 \pi^{2} \frac{\mathrm{~d} M_{\nu}}{\mathrm{d} t}=C\left(Y_{l}^{\dagger} Y_{l}\right)^{T} M_{\nu}+C M_{\nu}\left(Y_{l}^{\dagger} Y_{l}\right)+\alpha M_{\nu}
$$

where, $t=\ln \left(\mu / \mu_{0}\right)$ and μ is the renormalization scale

> [Chankowski, Pluciennik, PLB316(1993)]

- With

$$
M_{\nu}\left(\Lambda_{\mathrm{EW}}\right)=I_{\alpha} I_{\tau}^{\dagger} M_{\nu}\left(\Lambda_{\mu \tau}\right) I_{\tau}^{*},
$$

where one defines $I_{\tau} \simeq \operatorname{diag}\left\{1,1,1-\Delta_{\tau}\right\}$ along with

$$
\mathbf{I}_{\alpha}=\exp \left(\frac{\mathbf{1}}{\mathbf{1 6} \pi^{2}} \int_{\ln \Lambda_{\mu \tau}}^{\ln \Lambda_{\mathrm{EW}}} \alpha \mathrm{~d} \mathbf{t}\right), \quad \quad \boldsymbol{\Delta}_{\tau}=\frac{\mathbf{C}}{\mathbf{1 6} \pi^{2}} \int_{\ln \Lambda_{\mathrm{EW}}}^{\ln \boldsymbol{\Lambda}_{\mu \tau}} \mathbf{y}_{\tau}^{2} \mathrm{~d} \mathbf{t}
$$

Cont...

- Impact of RG running:

Cont...

- Impact of RG running:

NN, Xing \& Zhang, EPJC78 (2018).

Explicit Breaking

- Modify (12)-position of M_{D},

$$
\text { S1: } \quad M_{D}^{\prime}=\left(\begin{array}{cc}
b & b^{*}(1+\epsilon) \\
c & d \\
d^{*} & c^{*}
\end{array}\right) \text {, }
$$

" ϵ breaks $\mu-\tau$ Reflection Symmetry"

Cont...

- Modify (22)-position of M_{R},

$$
\mathbf{S 4}: \quad M_{R}^{\prime}=\left(\begin{array}{cc}
m_{22} & m_{23} \\
m_{23} & m_{22}^{*}(1+\epsilon)
\end{array}\right)
$$

" ϵ breaks $\mu-\tau$ Reflection Symmetry"

Summarizing all scenarios:

Breaking Scenarios	θ_{23}^{\prime} $[\mathrm{deg}]$	$\delta_{C P}^{\prime}$ $[\mathrm{deg}]$	$\Delta \theta_{12}^{\prime}$ $[\mathrm{deg}]$	$\Delta \theta_{13}^{\prime}$ $[\mathrm{deg}]$	$\sum m_{\nu}$ $[\mathrm{eV}]$	$m_{e e}$ $[\mathrm{meV}]$
$\mathbf{S 1}$	$44.3 \rightarrow 45.7$	$-180 \rightarrow 180$	$-15 \rightarrow 10$	$-1 \rightarrow 9$	$0.0575 \rightarrow 0.061$	$1 \rightarrow 4.2$
$\mathbf{S 2}$	$35 \rightarrow 46$	$-100 \rightarrow-88$	$-18 \rightarrow 1$	$-0.1 \rightarrow 1.3$	$0.057 \rightarrow 0.061$	$3 \rightarrow 4.5$
	$40 \rightarrow 45$	$-90 \rightarrow-70$	$0 \rightarrow 9$	$0 \rightarrow 1.2$	-	-
$\mathbf{S 3}$	$37.5 \rightarrow 47$	$-98 \rightarrow-88$	$2 \rightarrow 7$	$-1.4 \rightarrow 0.2$	$0.057 \rightarrow 0.0615$	$3 \rightarrow 4.5$
	$46 \rightarrow 47$	$-94 \rightarrow-56$	$-20 \rightarrow 3$	$-1.7 \rightarrow 0.3$	-	-
$\mathbf{S 4}$	$43 \rightarrow 46$	$-100 \rightarrow-88$	$-0.2 \rightarrow 0.7$	$-3 \rightarrow 1$	$0.0575 \rightarrow 0.061$	$3.1 \rightarrow 4.4$
$\mathbf{S 5}$	$39 \rightarrow 46.5$	$-120 \rightarrow-84$	$-1 \rightarrow 2.6$	$-8 \rightarrow 8$	$0.057 \rightarrow 0.061$	$3 \rightarrow 4.5$

Scenarios $\Rightarrow M_{D}(12) \rightarrow \mathbf{S 1}, M_{D}(22) \rightarrow \mathbf{S} 2, M_{D}(32) \rightarrow \mathbf{S 3}$, $M_{R}(22) \rightarrow \mathbf{S} 4, M_{R}(12) \rightarrow \mathbf{S} 5$

T2K \& NO $\mu \mathrm{A}$ Tension:

* T2K : Tokai to Kamioka, 295 km, $0.76 \mathrm{GeV}, 22.5 \mathrm{kT}$ WC detector: SuperK
* $\mathrm{NO} \nu \mathrm{A}:$ FNAL to Ash River, $810 \mathrm{~km}, 1.7 \mathrm{GeV}, 14 \mathrm{kT}$ TASD detector

Comparison to T2K

 NOvA Preliminary

- Clear tension with T2K's preferred region.

T2K 2020 results:

$$
\sin ^{2} \theta_{23}=0.53_{-0.04}^{+0.03}, \delta=-1.89_{-0.58}^{+0.70}, \text { for } \mathrm{NO}
$$

T2K Collaboration Nature'2020

Implications:

- Interesting to look for the consequences of " $\mu-\tau$ Reflection Symmetry" in long baseline neutrino oscillation experiments.

Implications:

- Interesting to look for the consequences of " $\mu-\tau$ Reflection Symmetry" in long baseline neutrino oscillation experiments.
- We consider DUNE (Deep Underground Neutrino Experiment), a proposed long baseline experiment at Fermilab, USA
- DUNE will improve the precision of θ_{23} and play a key role to probe δ [Acciarri et al.(DUNE), arXiv:1512.06148].

DUNE

- DUNE: Neutrinos travel from Fermilab to Sanford Underground Research Facility (SURF), $1300 \mathrm{~km}, 2.3 \mathrm{GeV}, 1.07 \mathrm{MW}, 4 \times 10 \mathrm{kt}-\mathrm{LArTPC}$ detector
[Alio et. al., (DUNE collab.), arXiv: 1601.09550].
- Their first 2-modules are expected to be completed in 2024, with the beam operational in 2026

$$
\text { arXiv: 0407333, } 0701187
$$

Framework:

- First scenario:

$$
M_{D}=\left(\begin{array}{cc}
a e^{i \phi_{a}} & a e^{-i \phi_{a}} \\
b e^{i \phi_{b}} & c e^{i \phi_{c}} \\
c e^{-i \phi_{c}} & b e^{-i \phi_{b}}
\end{array}\right), M_{R}=\operatorname{diag}\left(M_{1}, M_{1}\right)
$$

- Within type-I seesaw:

$$
-M_{\nu}=M_{D} M_{R}^{-1} M_{D}^{T},
$$

$$
=\frac{1}{M_{1}}\left(\begin{array}{ccc}
2 a^{2} \cos 2 \phi_{a} & a b e^{i\left(\phi_{a}+\phi_{b}\right)}+a c e^{-i\left(\phi_{a}-\phi_{c}\right)} & a b e^{-i\left(\phi_{a}+\phi_{b}\right)}+a c e^{i\left(\phi_{a}-\phi_{c}\right)} \\
- & b^{2} e^{2 i \phi_{b}}+c^{2} e^{2 i \phi_{c}} & 2 b c \cos \left(\phi_{b}-\phi_{c}\right) \\
- & - & b^{2} e^{-2 i \phi_{b}}+c^{2} e^{-2 i \phi_{c}}
\end{array}\right) .
$$

$$
\text { - } M_{e e}=M_{e e}^{*}, \quad M_{\mu \tau}=M_{\mu \tau}^{*}, \quad M_{e \mu}=M_{e \tau}^{*}, \quad M_{\mu \mu}=M_{\tau \tau}^{*}
$$

- Predicts non-zero θ_{13} with,

$$
\theta_{23}=45^{\circ}, \quad \delta= \pm 90^{\circ} .
$$

Cont...

- DUNE's Potential:

- CP-conservation hypothesis can be ruled out around 5σ

NN, arXiv: 1805.05823, PRD98 (2018)

Cont...

Break M_{D} :

$$
\begin{gathered}
\widehat{M}_{D}=\left(\begin{array}{cc}
a e^{i \phi_{a}} & a e^{-i \phi_{a}} \\
b e^{i \phi_{b}} & c e^{i \phi_{c}} \\
c e^{-i \phi_{c}} & b(1+\epsilon) e^{-i \phi_{b}}
\end{array}\right) . \\
\widehat{M}_{\nu} \simeq M_{\nu}-\epsilon \frac{b e^{-i \phi_{b}}}{M_{1}}\left(\begin{array}{ccc}
0 & 0 & a e^{-i \phi_{a}} \\
0 & 0 & c e^{i \phi_{c}} \\
b e^{-i \phi_{a}} & c e^{i \phi_{c}} & 2 b e^{-2 i \phi_{b}}
\end{array}\right)+\mathcal{O}\left(\epsilon^{2}\right) .
\end{gathered}
$$

- Best fit: $\left(194_{-22}^{+24}, 49.26 \pm 0.79\right)$
- Predicted δ, θ_{23} are well within 1σ
- Maximal θ_{23} is ruled at $>1 \sigma$

Impact on $0 \nu \beta \beta$ decay:

- Whether $\nu=\bar{\nu}$ is yet unknown?
- $0 \nu \beta \beta$-decay is the only feasible process to address this issue.

- $0 \nu \beta \beta \Rightarrow \Delta L=2$; violate lepton number by 2 units.
- The half-life:

$$
\left(T_{1 / 2}^{0 \nu}\right)^{-1}=G_{0 \nu}\left|M_{0 \nu}(A, Z)\right|^{2}\left|\langle m\rangle_{e e}\right|^{2},
$$

- The effective Majorana neutrino mass

$$
\left|<m_{e e}>\left|=\left|m_{1} c_{12}^{2} c_{13}^{2} e^{2 i \rho}+m_{2} s_{12}^{2} c_{13}^{2} e^{2 i \sigma}+m_{3} s_{13}^{2} e^{-2 i \delta}\right| .\right.\right.
$$

Cont....

- $\mu-\tau$ reflection symmetry $\Rightarrow \theta_{23}=45^{\circ}, \quad \delta= \pm 90^{\circ}, \quad \rho, \sigma=0^{\circ}$ or 90°

Cont...

- Under global-fit:

Generalized CP (gCP) symmetry

- Reminder:

$$
\begin{aligned}
& \psi \rightarrow X \psi ; \mu-\tau \text { permutation symmetry } \\
& \psi \rightarrow X \psi^{c} ; \mu-\tau \text { reflection symmetry }
\end{aligned}
$$

where

$$
X=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

- In gCP, one assumes

$$
\psi \xrightarrow{C P} i X_{\psi} \gamma^{0} \psi^{c}
$$

X_{ψ} are the generalized CP transformation matrices
[Feruglioa, Hagedorna, Ziegler, arXiv:1211.5560 Chen, Li, Ding, arXiv:1412.8352, Chen, Ding, Gonzalez-Canales, Valle, arXiv:1512.01551]
with

$$
\begin{aligned}
& X_{\psi}^{T} m_{\psi} X_{\psi}=m_{\psi}^{*}, \quad \text { (Majorana fields) } \\
& X_{\psi}^{\dagger} M_{\psi}^{2} X_{\psi}=M_{\psi}^{2 *}, \quad \text { (Dirac fields) } .
\end{aligned}
$$

Generalized CP (gCP) symmetry

- Reminder:

$$
\begin{aligned}
& \psi \rightarrow X \psi ; \mu-\tau \text { permutation symmetry } \\
& \psi \rightarrow X \psi^{c} ; \mu-\tau \text { reflection symmetry }
\end{aligned}
$$

where

$$
X=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

- In gCP, one assumes

$$
\psi \xrightarrow{C P} i X_{\psi} \gamma^{0} \psi^{c}
$$

X_{ψ} are the generalized CP transformation matrices
[Feruglioa, Hagedorna, Ziegler, arXiv:1211.5560 Chen, Li, Ding, arXiv:1412.8352, Chen, Ding, Gonzalez-Canales, Valle, arXiv:1512.01551]
with

$$
\begin{gathered}
X_{\psi}^{\top} m_{\psi} X_{\psi}=m_{\psi}^{*}, \quad \text { (Majorana fields) } \\
X_{\psi}^{\dagger} M_{\psi}^{2} X_{\psi}=M_{\psi}^{2 *}, \quad \text { (Dirac fields) } \\
X_{\psi} ?
\end{gathered}
$$

Generalized CP (gCP) symmetry

- Reminder:

$$
\begin{aligned}
& \psi \rightarrow X \psi ; \mu-\tau \text { permutation symmetry } \\
& \psi \rightarrow X \psi^{c} ; \mu-\tau \text { reflection symmetry }
\end{aligned}
$$

where

$$
X=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

- In gCP, one assumes

$$
\psi \xrightarrow{C P} i X_{\psi} \gamma^{0} \psi^{c}
$$

X_{ψ} are the generalized CP transformation matrices
[Feruglioa, Hagedorna, Ziegler, arXiv:1211.5560 Chen, Li, Ding, arXiv:1412.8352, Chen, Ding, Gonzalez-Canales, Yale, arXiv:1512.01551]
with

$$
\begin{aligned}
& X_{\psi}^{T} m_{\psi} X_{\psi}=m_{\psi}^{*}, \quad \text { (Majorana fields) } \\
& X_{\psi}^{\dagger} M_{\psi}^{2} X_{\psi}=M_{\psi}^{2 *}, \quad \text { (Dirac fields) } .
\end{aligned}
$$

$$
X_{\psi} ? U_{P M N S} \text { ? }
$$

[^0]
Cont...

- Steps to find $U_{P M N S}$: [Chen, Chulia, Ding, Srivastava, Valle, arXiv:1802.04275]

$$
\begin{array}{ll}
U_{\psi}^{\top} m_{\psi} U_{\psi}=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right), & \text { (Majorana fields) } \\
U_{\psi}^{\dagger} M_{\psi}^{2} U_{\psi}=\operatorname{diag}\left(m_{1}^{2}, m_{2}^{2}, m_{3}^{2}\right), & \text { (Dirac fields) } .
\end{array}
$$

- U_{ψ} satisfies the following constraint

$$
U_{\psi}^{\dagger} X_{\psi} U_{\psi}^{*} \equiv P=\left\{\begin{array}{rc}
\operatorname{diag}(\pm 1, \pm 1, \pm 1), & \text { for Majorana fields } \\
\operatorname{diag}\left(e^{i \delta_{1}}, e^{i \delta_{2}}, e^{i \delta_{3}}\right), & \text { for Dirac fields }
\end{array}\right.
$$

- Unitary-symmetric matrix X_{ψ} can be decomposed as $X_{\psi}=\Sigma \cdot \Sigma^{T}$.
- Subsequently, $P^{-\frac{1}{2}} U_{\psi}^{\dagger} \Sigma \equiv O_{3}, \Rightarrow U_{\psi}=\Sigma O_{3}^{T} P^{-\frac{1}{2}}$, where O_{3},

$$
O_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{\theta_{1}} & s_{\theta_{1}} \\
0 & -s_{\theta_{1}} & c_{\theta_{1}}
\end{array}\right)\left(\begin{array}{ccc}
c_{\theta_{2}} & 0 & s_{\theta_{2}} \\
0 & 1 & 0 \\
-s_{\theta_{2}} & 0 & c_{\theta_{2}}
\end{array}\right)\left(\begin{array}{ccc}
c_{\theta_{3}} & s_{\theta_{3}} & 0 \\
-s_{\theta_{3}} & c_{\theta_{3}} & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

- Maximum possible zeros in $X_{\psi}: 4$; [Chen, Ding, Gonzalez-Canales, Valle, arXiv:1604.03510]
- $X_{\psi}: 11$ possibilities, 8 are compatible with latest data.

Cont...

- No-Zeros in $X: \frac{1}{\sqrt{3}}\left(\begin{array}{ccc}e^{i \alpha} & e^{i\left(\frac{\alpha+\beta}{2}+\frac{2 \pi}{3}\right)} & e^{i\left(\frac{\alpha+\gamma}{2}+\frac{2 \pi}{3}\right)} \\ e^{i\left(\frac{\alpha+\beta}{2}+\frac{2 \pi}{3}\right)} & e^{i \beta} & e^{i\left(\frac{\beta+\gamma}{2}+\frac{2 \pi}{3}\right)} \\ e^{i\left(\frac{\alpha+\gamma}{2}+\frac{2 \pi}{3}\right)} & e^{i\left(\frac{\beta+\gamma}{2}+\frac{2 \pi}{3}\right)} & e^{i \gamma}\end{array}\right)$
- This leads,

Cont...

- One-Zero in $X:\left(\begin{array}{ccc}e^{i \alpha} c_{\Theta}^{2} & e^{i \gamma} c_{\Theta} s_{\Theta} & e^{i \beta} s_{\Theta} \\ e^{i \gamma} c_{\Theta} s_{\Theta} & e^{i(-\alpha+2 \gamma)} s_{\Theta}^{2} & -e^{i \alpha_{1}} c_{\Theta} \\ e^{i \beta} s_{\Theta} & -e^{i \alpha_{1}} c_{\Theta} & 0\end{array}\right)$
- This leads,

Cont...

- Two-Zeros in X :

$$
\left(\begin{array}{ccc}
e^{i \alpha} & 0 & 0 \\
0 & e^{i \beta} c_{\Theta} & i e^{i(\beta+\gamma) / 2} s_{\Theta} \\
0 & i e^{i(\beta+\gamma) / 2} s_{\Theta} & e^{i \gamma} c_{\Theta}
\end{array}\right)
$$

- $\Rightarrow \sin ^{2} \delta \sin ^{2} 2 \theta_{23}=\sin ^{2} \Theta,(\Theta$ is the model parameter. $)$
'Generalized $\mu-\tau$ reflection symmetry'
- $\Theta= \pm \pi / 2 \Rightarrow$ 'exact $\mu-\tau$ reflection symmetry',
i.e. $\theta_{23}=45^{\circ}, \delta= \pm 90^{\circ}$
- $\Theta=0 \Rightarrow$ CP-conservation.
- $\Theta \neq 0 \Rightarrow$ deviations from the symmetry.

Cont...

- Two-Zeros in X :

$$
\left(\begin{array}{ccc}
e^{i \alpha} & 0 & 0 \\
0 & e^{i \beta} c_{\Theta} & i e^{i(\beta+\gamma) / 2} s_{\Theta} \\
0 & i e^{i(\beta+\gamma) / 2} s_{\Theta} & e^{i \gamma} c_{\Theta}
\end{array}\right)
$$

- $\Rightarrow \sin ^{2} \delta \sin ^{2} 2 \theta_{23}=\sin ^{2} \Theta,(\Theta$ is the model parameter.)
'Generalized $\mu-\tau$ reflection symmetry'
- $\Theta= \pm \pi / 2 \Rightarrow$ 'exact $\mu-\tau$ reflection symmetry', i.e. $\theta_{23}=45^{\circ}, \delta= \pm 90^{\circ}$
- $\Theta=0 \Rightarrow$ CP-conservation.
- $\Theta \neq 0 \Rightarrow$ deviations from the symmetry.
- Z_{2} symmetric X :

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{\gamma} & e^{-i \alpha} s_{\gamma} \\
0 & e^{i \alpha} \boldsymbol{s}_{\gamma} & -c_{\gamma}
\end{array}\right) \Longrightarrow \text { TBM }
$$

Cont...

- DUNE's capability:

- Precise measurement of θ_{23}, δ by DUNE can rule out various models.

Bi-large ansatze Motivation:

- Smallest leptonic-mixing angle \simeq largest of the quark-mixing angle.
- Cabibbo angle (λ) may act as the universal seed for quark and lepton mixings.
- Bi-large patterns arise from the simplest GUTs model.

Boucenna, Morisi, Tortala, Valle: 1206.2555, Roy, Morisi, Singh, Valle: 1410.3658

- ν-mixing angles are related with λ,

$$
\begin{equation*}
\sin \theta_{12}=\sin \theta_{23}=\psi \lambda, \quad \sin \theta_{13}=\lambda \quad \text { with } \lambda=0.22453 \tag{1}
\end{equation*}
$$

- ν-part of mixing matrix $U_{B L}$ is given by

$$
U_{B L}=\left[\begin{array}{ccc}
c \sqrt{1-\lambda^{2}} & \psi \lambda \sqrt{1-\lambda^{2}} & \lambda \tag{2}\\
-c \psi \lambda(1+\lambda) & c^{2}-\psi^{2} \lambda^{3} & \psi \lambda \sqrt{1-\lambda^{2}} \\
-c^{2} \lambda+\psi^{2} \lambda^{2} & -c \psi \lambda(1+\lambda) & c \sqrt{1-\lambda^{2}}
\end{array}\right], \quad c \equiv \cos ^{\sin ^{-1}(\psi \lambda) .}
$$

Cont...

- The $S O(10)$ GUT-motivated, CKM-type charged-lepton corrections,

$$
U_{12}=\Phi^{\dagger} R_{12}^{T}\left(\theta_{12}^{C K M}\right) \Phi R_{23}^{T}\left(\theta_{23}^{C K M}\right) \simeq\left[\begin{array}{ccc}
1-\frac{1}{2} \lambda^{2} & -\lambda e^{i \phi} & A \lambda^{3} e^{i \phi} \\
\lambda e^{-i \phi} & 1-\frac{1}{2} \lambda^{2} & -A \lambda^{2} \\
0 & A \lambda^{2} & 1
\end{array}\right]
$$

with $\sin \theta_{12}^{C K M}=\lambda$ and $\sin \theta_{23}^{C K M}=A \lambda^{2}$, where λ, A are the Wolfenstein parameters.

- The lepton mixing matrix is simply given by $U=U_{l_{1}}^{\dagger} U_{B L 1} \Rightarrow$

$$
\begin{aligned}
\sin ^{2} \theta_{13} & \simeq \lambda^{2}+2 \psi \lambda^{3} \cos \phi-\left(1-\psi^{2}\right) \lambda^{4}, \\
\sin ^{2} \theta_{12} & \simeq\left(c^{4}+2 c^{2} \psi \cos \phi+\psi^{2}\right) \lambda^{2}+\left(c^{4}-\psi^{2}\right) \lambda^{4}, \\
\sin ^{2} \theta_{23} & \simeq \psi^{2} \lambda^{2}+2(A c-\cos \phi) \psi \lambda^{3}+\left(1-\psi^{2}-2 A c \cos \phi+A^{2} c^{2}\right) \lambda^{4}, \\
J_{C P} & \simeq c^{2}\left[\psi+\left(\psi+A c-\psi^{3}\right) \lambda\right] \lambda^{3} \sin \phi .
\end{aligned}
$$

Cont...

- Allowed parameter space for T4:

- Predicts $\left(\sin ^{2} \theta_{23}, \delta\right)=(0.51,1.78 \pi)$

Cont...

- Left panel \Rightarrow Global-fit, right panel \Rightarrow DUNE analysis.

Tetra-maximal mixing

- It is expressed as

$$
\begin{aligned}
V_{0} & =P_{I} \otimes O_{23}(\pi / 4, \pi / 2) \otimes O_{13}(\pi / 4,0) \otimes O_{12}(\pi / 4,0) \otimes O_{13}(\pi / 4, \pi) \\
& =\frac{1}{2}\left(\begin{array}{ccc}
1+\frac{1}{\sqrt{2}} & 1 & 1-\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}\left[1+i\left(1-\frac{1}{\sqrt{2}}\right)\right] \\
-\frac{1}{\sqrt{2}}\left[1-i\left(1-\frac{1}{\sqrt{2}}\right)\right] & 1+\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\left[1-i\left(1+\frac{1}{\sqrt{2}}\right)\right. \\
1-i \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\left[1+i\left(1+\frac{1}{\sqrt{2}}\right)\right]
\end{array}\right] .
\end{aligned}
$$

Proposed by Xing, PRD78 (2008)

- This leads to

$$
\tan \theta_{12}=2-\sqrt{2}, \quad \tan \theta_{23}=1, \quad \sin \theta_{13}=\frac{1}{4}(2-\sqrt{2}),
$$

where $\theta_{12} \approx 30.4^{\circ}, \theta_{13} \approx 8.4^{\circ}, \theta_{23}=45^{\circ}$ and $-\delta=\rho=\sigma=90^{\circ}$.

Breaking of tetra-maximal mixing

- Breaking due to RGE-running

NN, NPB(956) 2020, arXiv: 1912.11517

Cont...

- Explicit breaking

$$
\begin{aligned}
V^{\prime} & =P_{l} \otimes O_{23}\left(\frac{\pi}{4}, \frac{\pi}{2}+\delta_{\epsilon}\right) \otimes O_{13}\left(\frac{\pi}{4}, 0\right) \otimes O_{12}\left(\frac{\pi}{4}+\epsilon_{12}, 0\right) \otimes O_{13}\left(\frac{\pi}{4}, \pi\right) \\
& =V_{0}+\frac{1}{4} \epsilon_{12}\left(\begin{array}{ccc}
-\sqrt{2} & 2 & \sqrt{2} \\
-\sqrt{2}-i & -2+i \sqrt{2} & \sqrt{2}+i \\
-\sqrt{2}+i & -2-i \sqrt{2} & \sqrt{2}-i
\end{array}\right)+\frac{1}{4} \delta_{\epsilon}\left(\begin{array}{ccc}
0 & 0 & 0 \\
1-\sqrt{2} & \sqrt{2} & -1-\sqrt{2} \\
i \sqrt{2} & i 2 & i \sqrt{2}
\end{array}\right) \\
& +\mathcal{O}\left(\epsilon_{13}^{2}, \delta_{\epsilon}^{2}, \epsilon_{13} \delta_{\epsilon}\right)
\end{aligned}
$$

Wrap-up Comments:

- We have made an attempt to address the theory behind neutrinos flavor mixing and their tiny masses.
- Our main focus was on $\mu-\tau$ reflection symmetry which leads to $\theta_{23}=\pi / 4, \delta= \pm \pi / 2$ and $\theta_{13} \neq 0$ along with $\rho, \sigma=0, \pi / 2$.
- Further, to explain realistic leptonic mixing patterns, we have discussed, (i) breaking of exact symmetry, (ii) generalized CP symmetries and (iii) bi-large ansatze.
- We have also presented the impact of these symmetries for DUNE as well as on $0 \nu \beta \beta$-decay.
- Finally, present status of tetra-maximal mixing has been presented.

Wrap-up Comments:

- We have made an attempt to address the theory behind neutrinos flavor mixing and their tiny masses.
- Our main focus was on $\mu-\tau$ reflection symmetry which leads to $\theta_{23}=\pi / 4, \delta= \pm \pi / 2$ and $\theta_{13} \neq 0$ along with $\rho, \sigma=0, \pi / 2$.
- Further, to explain realistic leptonic mixing patterns, we have discussed, (i) breaking of exact symmetry, (ii) generalized CP symmetries and (iii) bi-large ansatze.
- We have also presented the impact of these symmetries for DUNE as well as on $0 \nu \beta \beta$-decay.
- Finally, present status of tetra-maximal mixing has been presented.

thank you

[^0]: Recent studies :Chen, Ding, Gonzalez-Canales, Dale, arXiv:1604.03510, Chen, Chulia, Ding, Srivastava, Dale,
 arXiv:1802.04275, Joshipura, Patel, arXiv : 1805.02002, Lu, Ding, arXiv: 1806.02301, Barreiros, Felipe, Joaquim,

