Lecture 2: pQCD at hadron colliders, new perturbative methods, colllinear factorisation, parton densities and jets

Strong interactions at colliders

From August 9-13, 2021. Online

- SM based in the simplest gauge symmetries: $\mathbf{S U (3) x S U (2) \mathbf { x U } (\mathbf { 1 })}$
- Also the flavour sector very symmetric (GIM)
- The "natural" theory at "low" energies (below the TeVs)
- We should expect that it will break at high energies: departure scale undetermined | no theory guidance

WHERE TO EXPECT A BSM SIGNAL?

- LHC results suggest that new physics will appear as a gentle deviation from the SM predictions / rare events suppressed in the SM
- Very unlikely to be visible in inclusive observables or total decay rates of known particles: the bulk of the contributions at "low energies", the characteristic hard scale is "low energy"
- Higher chances at the tail of differential distributions (not necessarily a clear bump) "high energy" characteristic hard scale: more sensitive to quantum corrections / missing quantum corrections can fake BSM
physicSWOrld FEB 2019

4 4 Precise measurements of known particles and interactions are just as important as finding new particles

"This work naturally pushes our search methods towards making more detailed and higher precision measurements that will help us constrain possible deviations by new physics," Willocq says.

New channels open from LO to NLO at hadron colliders

Higgs boson production is one loop at LO

New channels open from LO to NLO at hadron colliders

QCD correction to the LO

New channels open from LO to NLO at hadron colliders

QCD correction to the LO

New channels open from LO to NLO at hadron colliders

Higgs boson production
is one loop at LO
g

QCD correction to the LO
New channels at NLO: $q g(\bar{q} g)$ and $q \bar{q}$

- Only NNLO is a correction to all the channels that appear at the NLO

Perturbative progress at hadron-hadron colliders

higher perturbative orders improve systematically the precision of the theoretical predictions (estimated by varying the renormalization / factorization scales) for background and signal. Uncertainty bands are expected to narrow and overlap from one order to the next one

Perturbative progress at hadron-hadron colliders

higher perturbative orders improve systematically the precision of the theoretical predictions (estimated by varying the renormalization / factorization scales) for background and signal. Uncertainty bands are expected to narrow and overlap from one order to the next one

- LO: fails to describe normalization (up to a factor 2). Monte Carlo event generators (LO + parton showers) : improves the shape of distributions, but normalization still underestimated

Perturbative progress at hadron-hadron colliders

higher perturbative orders improve systematically the precision of the theoretical predictions (estimated by varying the renormalization / factorization scales) for background and signal. Uncertainty bands are expected to narrow and overlap from one order to the next one

- LO: fails to describe normalization (up to a factor 2). Monte Carlo event generators (LO + parton showers) : improves the shape of distributions, but normalization still underestimated
- NLO: first reliable estimate of central value (because protons are not elementary)

Perturbative progress at hadron-hadron colliders

higher perturbative orders improve systematically the precision of the theoretical predictions (estimated by varying the renormalization / factorization scales) for background and signal. Uncertainty bands are expected to narrow and overlap from one order to the next one

- LO: fails to describe normalization (up to a factor 2). Monte Carlo event generators (LO + parton showers) : improves the shape of distributions, but normalization still underestimated
- NLO: first reliable estimate of central value (because protons are not elementary)
- NNLO: first serious estimate of the theoretical uncertainty

THE NNLO STANDARD

NNLO HADRON-COLLIDER CALCULATIONS VS. TIME

Explosion of calculations starting in 2014

Hj , Boughezal et al.
Wj, Boughezal, et
Wj, Boughezal, et al. Hj , Boughezal et al. VBF diff., Cacciari et al. Zj, Gehrmann-De Ridder et al. zz, Grazzini, Kallweit, Rathle , $\cdot \mathrm{Zj}$, Boughezal et al. WH diff, ZH diff, Campbell et al

THE I
 THE N³LO ERA

NNLO HADRON-COLLID

Explosion of calc starting in 2

N³LO HADRON-COLLIDER CALCULATIONS VS. TIME

Proton collider
Electron colliderElectron-Proton collider Construction/Transformation

Need for precision @ HL-LHC

> illustrated in the case of Higgs physics
> theory uncertainty (PDF + strong coupling + missing higher orders) dominates in 7/9 channels
> this is with the assumption of reduction by $\times 2$ in today's uncertainties
> depending on channel, it can be the uncertainties for the signal or the background that dominates.

Figure 1. Projected uncertainties on κ_{i}, combining ATLAS and CMS: total (grey box), statistical (blue), experimental (green) and theory (red). From Ref. [2].

NEW PERTURBATIVE METHODS

factorisation into short distance (hard scattering = high energy) and long distance (initial and final state = low energy)

NEW PERTURBATIVE METHODS

factorisation into short distance (hard scattering = high energy) and long distance (initial and final state = low energy)

0 onerop antiluces

- The classical paradigm for the calculation of one-loop diagrams was established in 1979

Reduction of tensor one-loop integrals to scalar integrals

Calculation of one-loop scalar integrals
G. Passarino, M. Veltman

One-loop corrections for e+e- annihilation
into $\mu+\mu$ - in the Weinberg model
Nucl. Phys. B160 (1979) 151-207

G. 't Hooft, M. Veltman
Scalar one-loop integrals
Nucl. Phys. B153 (1979) 365-401

0 onerop antiluces

- The classical paradigm for the calculation of one-loop diagrams was established in 1979

Reduction of tensor one-loop integrals to scalar integrals

Calculation of one-loop scalar integrals

G. Passarino, M. Veltman
 One-loop corrections for e+e- annihilation into $\mu+\mu$ - in the Weinberg model
 Nucl. Phys. B160 (1979) 151-207

```
G. 't Hooft, M. Veltman
Scalar one-loop integrals
Nucl. Phys. B153 (1979) 365-401
```

- Difficult for processes beyond 2 $\boldsymbol{\rightarrow}$ 2
(Gramm determinants + large number of Feynman diagrams)

0 ne- Dop antonuces

- The classical paradigm for the calculation of one-loop diagrams was established in 1979

Reduction of tensor one-loop integrals to scalar integrals

Calculation of one-loop scalar integrals
G. Passarino, M. Veltman

One-loop corrections for e+e- annihilation into $\mu+\mu$ - in the Weinberg model Nucl. Phys. B160 (1979) 151-207

G. 't Hooft, M. Veltman Scalar one-loop integrals Nucl. Phys. B153 (1979) 365-401

- Difficult for processes beyond $2 \rightarrow 2$
(Gramm determinants + large number of Feynman diagrams)
- At two-loops: reduction to Master Integrals (not unique) e.g. by Integration-By-Parts Identities [Chetyrkin, Tkachov 1981, Tarasov 1998, Laporta 2000]

Properties of the S-Matrix

- Analyticity: scattering amplitudes are determined by their singularities

Properties of the S-Matrix

- Analyticity: scattering amplitudes are determined by their singularities
- Unitarity: the residues at singular points are products of scattering amplitudes with lower number of legs and/or less loops

Rectist on taym enduniextymelaods

Properties of the S-Matrix

- Analyticity: scattering amplitudes are determined by their singularities
- Unitarity: the residues at singular points are products of scattering amplitudes with lower number of legs and/or less loops

- recycling: using scattering amplitudes to calculate other scattering amplitudes

Rectist on tand

Properties of the S-Matrix

- Analyticity: scattering amplitudes are determined by their singularities
- Unitarity: the residues at singular points are products of scattering amplitudes with lower number of legs and/or less loops

Translations of MATHEMATICAL MONOGRAPHS

```
Volume 58
```

Integral
Representations
and Residues
in Multidimensional
Complex Analysis

I. A. Aïzenberg
A. P. Yuzhakov

[^0]Expressions simplify by using "right variables" | e.g. for N-gluons at tree level

$$
\mathscr{M}_{N}^{(0)}\left(\left\{p_{i}, h_{i}, a_{i}\right\}\right)=\sum_{P(1, \ldots, N)} \operatorname{Tr}\left(\mathbf{t}^{a_{1}} \mathbf{t}^{\left.\left.a_{2} \ldots \mathbf{t}^{a_{N}}\right) \mathscr{A}_{N}^{(0)}\left(\left\{p_{i}, h_{i}\right\}\right), ~()^{2}\right)}\right.
$$

sum over permutations
colour ordered subamplitude:

- Depends on the momenta and helicities

\# gluons	\# diagrams	\# color ordered diagrams
4	4	3
5	25	10
6	220	36
7	2.485	133
8	34.300	501
9	559.405	1.991
10	10.525.900	7.225

- gauge-invariant
- fixed cyclic order of external legs
[Cvitanovic, Lauwers, Scharbach, Berends, Giele, Mangano, Parke, Xu,Bern,Kosower, Lee, Nair]

Four-dimensional spinors of definite helicity

$$
\begin{aligned}
& \left|i^{ \pm}\right\rangle=\frac{1}{2}\left(1 \pm \gamma_{5}\right) u\left(p_{i}\right)=v_{\mp}\left(p_{i}\right) \\
& p_{i}^{2}=0 \quad p_{i}^{a \dot{a}}=p_{i}^{\mu} \sigma_{\mu}^{a \dot{a}}=\lambda_{i}^{a} \tilde{\lambda}_{i}^{\dot{a}}
\end{aligned}
$$

spinor algebra and other useful identities

- holomorphic inner product:

$$
\langle i j\rangle=\left\langle i^{-} \mid j^{+}\right\rangle=\varepsilon_{a b} \lambda_{i}^{a} \lambda_{j}^{b}=\sqrt{\left|S_{i j}\right|} e^{\imath \phi_{i j}}=-\langle j i\rangle
$$

- anti-holomorphic inner product:

$$
[i j]=\left\langle i^{+} \mid \dot{j}^{-}\right\rangle=\varepsilon_{\dot{a} \dot{b}} \tilde{\lambda_{i}^{a}} \tilde{\lambda_{j}^{\dot{b}}}=-\langle i j\rangle^{*}=-[j i]
$$

- sum over polarisations $\not p_{i}=|i\rangle[i|+| i]\langle i|$
- equation of motion $\not p_{i}\left|i^{ \pm}\right\rangle=0$
other $\langle i j]=0=\langle i i\rangle$

$$
\left.\left[i\left|\gamma^{\mu}\right| j\right\rangle=\langle j| \gamma^{\mu} \mid i\right]
$$

$$
s_{i j}=\left(p_{i}+p_{j}\right)^{2}=\langle i j\rangle[j i]
$$

gluon polarisation vectors

$$
\begin{gathered}
\epsilon^{2}=0=\epsilon^{+} \cdot \epsilon^{-}, \quad k \cdot \epsilon^{ \pm}(k)=0 \\
\epsilon_{\mu}^{+}(k, \xi)=\frac{\left.\langle\xi| \gamma_{\mu} \mid k\right]}{\sqrt{2}\langle\xi k\rangle} \\
\epsilon_{\mu}^{-}(k, \xi)=\frac{\left[\xi\left|\gamma_{\mu}\right| k\right\rangle}{\sqrt{2}[k \xi]}
\end{gathered}
$$

- equivalent to axial gauge $\xi=n$
- a clever choice of the gauge momentum can simplify calculations

MTV amp thanes

Multi-gluonic amplitudes at tree level: Amplitude for all gluons of positive helicity or one single gluon of negative helicity vanishes

- two negative helicities (Maximal Helicity Violating Amplitude) rather simple [Parke-Taylor, 1986]

$$
\begin{aligned}
& \mathscr{A}_{n}^{(0)}\left(1^{+}, \ldots, i^{ \pm}, \ldots, n^{+}\right)=0 \\
& \mathscr{A}_{n}^{(0)}\left(1^{+}, \ldots, i^{-}, \ldots, j^{-}, \ldots, n^{+}\right)=\frac{\langle i j\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle(n-1) n\rangle\langle n 1\rangle}
\end{aligned}
$$

proven via recursion relations [Berends-Giele, Mangano-Parke-Xu, 1988]
next-to-MHV $\mathscr{A}_{n}^{\mathrm{NMHV}}\left(1^{+}, \ldots, i^{-}, \ldots, j^{-}, \ldots, k^{-}, \ldots, n^{+}\right)$does contain both $\langle i j\rangle$ and $[i j]$ [Kosower, 1990]

Ofi-shinl recolicon reations

1

- Define Off-shell current: amplitude with one off-shell leg, building block for the off-shell current with higher multiplicity

- the gluonic current particularly simple for some helicity configurations

$$
J^{\mu}\left(i^{+}, \ldots, j^{+}\right)=\frac{\langle\xi| \gamma^{\mu} p_{i, j}|\xi\rangle}{\sqrt{2}\langle\xi i\rangle\langle i(i+1)\rangle \cdots\langle j \xi\rangle}
$$

- on-shell amplitude by setting on-shell the off-shell leg

How to reconstruct a scattering amplitude from its singularities

Add $z \eta^{\mu}$ (z complex) to the four-momentum of one external particle and subtract it on another such that the shift leaves them on-shell

$$
0=\frac{1}{2 \pi l} \oint_{C \text { at } \infty} \frac{\mathscr{A}_{n}^{(0)}(z)}{z}=\mathscr{A}_{n}^{(0)}(z=0)-\sum_{z_{i}} \frac{\operatorname{Res}_{z_{i}} \mathscr{A}_{n}^{(0)}(z)}{z_{i}}
$$

has the correct residue at any multi-particle pole

$$
\mathscr{A}_{n}^{(0)}(1,2, \ldots, n)=\sum \mathscr{A}_{L}^{(0)}\left(\hat{1}, 2, \ldots,-\hat{p}_{1, k}\right) \frac{i}{s_{1, k}} \mathscr{A}_{R}^{(0)}\left(\hat{p}_{1, k}, k+1, \ldots, \hat{n}\right)
$$

- Diagrammatic proof [Draggiotis, Kleiss, Lazopoulos, Papadopoulos]
- Compact analytical results, although colour dressed Berends-Giele (off-shell recursion) might be more efficient numerically [Duhr, Höche, Maltoni]
holomorphic shift $\quad(-,+)$ is not a safe shift)

$$
\begin{array}{ll}
\hat{p}_{i}^{\mu}=p_{i}^{\mu}+\frac{z}{2}\left[i\left|\gamma^{\mu}\right| j\right\rangle & |\hat{i}\rangle=|i\rangle+z|j\rangle \quad \mid \hat{i}]=\mid i] \\
\hat{p}_{j}^{\mu}=p_{j}^{\mu}-\frac{z}{2}\left[i\left|\gamma^{\mu}\right| j\right\rangle & |\hat{j}\rangle=|j\rangle \quad \mid \hat{j}]=\mid j]-z \mid i]
\end{array}
$$

anti-holomorphic shift ($\mathrm{i} \leftrightarrow \mathrm{j}$)
z determined by setting on-shell the intermediate momenta

$$
\hat{p}_{1, k}^{\mu}=p_{1, k}^{\mu}+\frac{z}{2}\left[i\left|\gamma^{\mu}\right| j\right\rangle, \quad \hat{p}_{1, k}^{2}=0, \quad z=-\frac{s_{1, k}}{\left[i\left|p_{1, k}\right| j\right\rangle}
$$

v use only on-shell amplitudes
\square rather compact expressions
区 generates spurious poles at $\left[i\left|p_{1, k}\right| j\right\rangle$
while physical IR divergences at $s_{i, j}=\left(p_{i}+p_{i+1}+\cdots+p_{j}\right)^{2}$

A dimensionally regulated n-point one-loop integral (scattering amplitude) is a linear combination of scalar boxes, triangles, bubbles and tadpoles with rational coefficients

- Pentagons and higher n-point functions can be reduced to lower point integrals and higher dimensional polygons that only contribute at $\mathrm{O}(\varepsilon)$ [Bern, Dixon, Kosower]
- The task is reduced to determining the coefficients: by applying multiple cuts at both sides of the equation [Brito, Cachazo, Feng]
- R is a finite piece that is entirely rational: can not be detected by four-dimensional cuts

Gential ex monian

Quadruple cut

The discontinuity across the leading singularity is unique

$$
C_{i}^{(4)}=A_{1} \times A_{2} \times A_{3} \times A_{4}
$$

Four on-shell constrains \Rightarrow freeze the loop momenta

Genteal ex monian

Quadruple cut

The discontinuity across the leading singularity is unique

$$
C_{i}^{(4)}=A_{1} \times A_{2} \times A_{3} \times A_{4}
$$

Four on-shell constrains \Rightarrow freeze the loop momenta

Triple cut

Only three on-shell constrains
\Rightarrow one free component of the loop momentum

And so on for double and single cuts

- OPP [Ossola, Pittau, Papadopoulos]: a systematic way to extract the coefficients

Genteal zex mina ity

Quadruple cut

The discontinuity across the leading singularity is unique

$$
C_{i}^{(4)}=A_{1} \times A_{2} \times A_{3} \times A_{4}
$$

Four on-shell constrains \Rightarrow freeze the loop momenta

Triple cut

Only three on-shell constrains
\Rightarrow one free component of the loop momentum

And so on for double and single cuts

- OPP [Ossola, Pittau, Papadopoulos]: a systematic way to extract the coefficients

Rational terms

d-dimensional cuts, recursion relations (BCFW), Feynman rules ...

THE LOOP-TREE DUALITY (LTD)

[Aguilera-Verdugo, Drientcourt-Mangin, Hernández-Pinto, Plenter, Ramírez-Uribe, Rentería-Olivo, GR, Sborlini, Torres-Bobadilla]

Cauchy residue theorem

in the loop energy complex plane

Feynman Propagator +iO:

encodes causality, i.e. positive frequencies are propagated forward in time, and negative backward

$$
G_{F}\left(q_{i}\right)=\frac{1}{q_{i}^{2}-m_{i}^{2}+i 0}
$$

selects residues with definite positive energy and negative imaginary part

O in arbitrary coordinate systems: reduce the dimension of the integration domain by one unit
O from Minkowski to Euclidean (loop threemomenta)

THE LOOP-TREE DUALITY (LTD)

[Aguilera-Verdugo, Drientcourt-Mangin, Hernández-Pinto, Plenter, Ramírez-Uribe, Rentería-Olivo, GR, Sborlini, Torres-Bobadilla]

One-loop amplitudes in any relativistic, local and unitary QFT represented as a linear combination of N single-cut phase-space/dual amplitudes | non-disjoint trees (at higher orders: number of cuts equal to the number of loops)

$$
\int_{\ell_{1}} \mathcal{N}\left(\ell_{1}\right) \prod G_{F}\left(q_{i}\right)=-\int_{\ell_{1}} \mathcal{N}\left(\ell_{1}\right) \otimes \sum \tilde{\delta}\left(q_{i}\right) \prod_{i \neq j} G_{D}\left(q_{i} ; q_{j}\right)
$$

- $\tilde{\delta}\left(q_{i}\right)=\imath 2 \pi \theta\left(q_{i, 0}\right) \delta\left(q_{i}^{2}-m_{i}^{2}\right)$ sets internal line on-shell, positive energy mode
- $G_{D}\left(q_{i} ; q_{j}\right)=\frac{1}{q_{j}^{2}-m_{j}^{2}-七 \eta \eta_{j i}}$ dual propagator $\quad k_{j i}=q_{j}-q_{i} \quad q_{i, 0}^{(+)}=\sqrt{\mathbf{q}_{i}^{2}+m_{i}^{2}-\iota 0}$

THE LOOP-TREE DUALITY (LTD)

One-loop amplitudes in any relativistic, local and unitary QFT represented as a linear combination of N single-cut phase-space/dual amplitudes | non-disjoint trees (at higher orders: number of cuts equal to the number of loops)

$$
\int_{\ell_{1}} \mathcal{N}\left(\ell_{1}\right) \prod G_{F}\left(q_{i}\right)=-\int_{\ell_{1}} \mathcal{N}\left(\ell_{1}\right) \otimes \sum \tilde{\delta}\left(q_{i}\right) \prod_{i \neq j} G_{D}\left(q_{i} ; q_{j}\right)
$$

- $\tilde{\delta}\left(q_{i}\right)=\imath 2 \pi \theta\left(q_{i, 0}\right) \delta\left(q_{i}^{2}-m_{i}^{2}\right)$ sets internal line on-shell, positive energy mode
- $G_{D}\left(q_{i} ; q_{j}\right)=\frac{1}{q_{j}^{2}-m_{j}^{2}-七 \eta k_{j i}}$ dual propagator $\quad k_{j i}=q_{j}-q_{i} \quad q_{i, 0}^{(+)}=\sqrt{\mathbf{q}_{i}^{2}+m_{i}^{2}-\iota 0}$
- LTD realised by modifying the customary +i0 prescription of the Feynman propagators (only the sign matters), it encodes in a compact way the effect of multiple-cut contributions that appear in the Feynman's Tree Theorem
- Lorentz invariant, best choice $\eta^{\mu}=(1, \mathbf{0})$: energy component integrated out, remaining integration in Euclidean space

LTD AT HIGHER ORDERS + CAUSALITY

[Aguilera-Verdugo, Drientcourt-Mangin, Hernández-Pinto, Plenter, Ramírez-Uribe, Rentería-Olivo, GR, Sborlini, Torres-Bobadilla]

- The LTD representation is an integral in the loop tree-momenta

$$
\mathscr{A}_{\mathrm{MLT}}^{(L)}(1, \ldots, n)=\int_{\vec{\ell}_{1} \cdots \vec{\ell}_{L}} \frac{1}{\prod 2 q_{i, 0}^{(+)}}\left(\frac{1}{\lambda_{1, n}^{+}}+\frac{1}{\lambda_{1, n}^{-}}\right), \quad \lambda_{1, n}^{ \pm}=\sum q_{i, 0}^{(+)} \pm k_{1 n, 0}
$$

- Independent of the initial momentum flow assignments
" Manifestly free of non-causal singularities: for all topologies and internal configurations

Qiskit

O Integrand numerical instabilities across a noncausal threshold

O manifestly causal LTD representation

Exercises:

1. Proof the Fierz and Shouten identities:

$$
\begin{aligned}
& \left.\langle 1| \gamma^{\mu} \mid 2\right]\left[3\left|\gamma_{\mu}\right| 4\right\rangle=2\langle 14\rangle[32] \\
& \langle 12\rangle\langle 34\rangle+\langle 14\rangle\langle 23\rangle+\langle 13\rangle\langle 42\rangle=0
\end{aligned}
$$

Hint: multiply and divide by $\langle 23\rangle$ or [23] and apply $\gamma^{\mu} \gamma^{\nu} \gamma^{\sigma} \gamma_{\mu}=4 g^{\nu \sigma}$
2. Calculate the scattering amplitudes and squared amplitude for $e^{+}\left(p_{1}\right) e^{-}\left(p_{2}\right) \rightarrow q\left(p_{3}\right) \bar{q}\left(p_{4}\right)$ by using the helicity method, and compare with the traditional calculation

$$
\begin{aligned}
& \mathscr{M}_{e^{+} e^{-} \rightarrow q \bar{q}}^{(0)} \sim\left[\bar{u}\left(p_{3}\right) \gamma^{\mu} v\left(p_{4}\right)\right]\left[\bar{v}\left(p_{1}\right) \gamma^{\nu} u\left(p_{2}\right)\right] d_{\mu \nu}\left(p_{12}\right) \\
& \left|\mathscr{M}^{(0)}\right|^{2}=\operatorname{Tr}\left(\not p_{1} \gamma^{\mu} \not p_{2} \gamma^{\sigma}\right) \operatorname{Tr}\left(\not p_{3} \gamma^{\nu} \not p_{4} \gamma^{\rho}\right) d_{\mu \sigma}\left(p_{12}\right) d_{\nu \rho}\left(p_{12}\right)
\end{aligned}
$$

How many independent helicity amplitudes there are?

Exercises:

3. Proof by induction that the Maximal Helicity Violating (MHV) amplitude for gluons is given by the expression

$$
\begin{aligned}
& \mathscr{A}_{n}^{(0)}\left(1^{+}, \ldots, i^{ \pm}, \ldots, n^{+}\right)=0 \\
& \mathscr{A}_{n}^{(0)}\left(1^{+}, \ldots, i^{-}, \ldots, j^{-}, \ldots, n^{+}\right)=\frac{\langle i j\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle(n-1) n\rangle\langle n 1\rangle}
\end{aligned}
$$

4. Calculate by using BCFW the six-gluon amplitude

$$
\mathscr{A}_{6}\left(1^{+}, 2^{+}, 3^{+}, 4^{-}, 5^{-}, 6^{-}\right)=\frac{i}{\langle 2| 1+6 \mid 5]}\left(\frac{\langle 6| 1+2 \mid 3]^{3}}{\langle 61\rangle\langle 12\rangle[34][45] s_{126}}+\frac{\langle 4| 5+6 \mid 1]^{3}}{\langle 23\rangle\langle 34\rangle[56][61] s_{561}}\right)
$$

THE COLLINEAR LIMIT OF QCD

factorisation into short distance （hard scattering＝high energy） and long distance（initial and final state＝low energy）

O initial－state parton densities $1 / \mathrm{GeV}=10^{-16} m$

Relevance of the collinear limit in QCD

- from hard scattering amplitudes to cross-sections: subtraction of IR singularities
- IR properties of amplitudes exploited to compute logarithmic enhanced perturbative terms: resummation of leading and subleading logs
- improve physics content of Monte Carlo event generators: parton showers
- scale evolution of PDF's and fragmentation functions
- Factorization theorems: from e+e- and DIS to hadron colliders
- beyond QCD: hints on the structure of highly symmetric gauge theories (e.g. N=4 super-Yang-Mills)

Collinear factorisation theorem proven for sufficiently inclusive observables in the final state of the scattering of colorless hadrons [Collins, Soper, Sterman]

- Offen assumed that partonic scattering amplitudes factorize: fixed order and resummations
- Monte Carlo event generators are based on factorisation
- In neither of these cases factorization is guaranteed at higher orders.
pQCD for hard-scattering processes based on universality:
- the sole uncancelled IR divergences are due to partonic states whose momenta are collinear to the collider partons
- removed by redefinition of bare parton densities

Collinear factorisation at tree-level

- Momenta p_{1}, \ldots, p_{m} of m partons become collinear
- Sub-energies $s_{i j}=\left(p_{i}+p_{j}\right)^{2}$ of the same order and vanish simultaneously
- leading singular behaviour $\left(\sqrt{s_{1, m}}\right)^{1-m}$ with $p_{1, m}=p_{1}+\ldots+p_{m}$

$$
\left|M^{(0)}\left(p_{1}, \ldots, p_{n}\right)\right\rangle=S p^{(0)}\left(p_{1}, \cdots, p_{m} ; \tilde{P}\right)\left|\bar{M}^{(0)}\left(\tilde{P} ; p_{m+1}, \ldots, p_{n}\right)\right\rangle+\mathcal{O}\left(\left(\sqrt{s_{1, m}}\right)^{3-m}\right)
$$

$$
\begin{aligned}
& \left|\mathscr{M}^{(2)}\left(p_{1}, \ldots, p_{n}\right)\right\rangle \\
& \simeq \mathbf{S p}^{(0)}\left(p_{1}, \ldots, p_{m} ; \widetilde{P}\right)\left|\overline{\mathscr{M}}^{(2)}\left(\widetilde{P} ; p_{m+1}, \ldots, p_{n}\right)\right\rangle \\
& \simeq \mathbf{S p}^{(1)}\left(p_{1}, \ldots, p_{m} ; \widetilde{P}\right)\left|\overline{\mathscr{M}}^{(1)}\left(\widetilde{P} ; p_{m+1}, \ldots, p_{n}\right)\right\rangle \\
& \simeq \mathbf{S p}^{(2)}\left(p_{1}, \ldots, p_{m} ; \widetilde{P}\right)\left|\bar{M}^{(0)}\left(\widetilde{P} ; p_{m+1}, \ldots, p_{n}\right)\right\rangle
\end{aligned}
$$

At two loops

Qualitative interpretation: two collinear partons

- Tree level:
- two-scale problem: collinear sub-energy $s_{12} \ll$ any other sub-energy (largeversus short-distance interactions)

Qualitative interpretation: two collinear partons

- Tree level:
- two-scale problem: collinear sub-energy $s_{12} \ll$ any other sub-energy (largeversus short-distance interactions)
- Loops:
- gauge interactions are long-range

Qualitative interpretation: two collinear partons

- Tree level:

- two-scale problem: collinear sub-energy $s_{12} \ll$ any other sub-energy (largeversus short-distance interactions)
- Loops:
- gauge interactions are long-range
- Interactions separately spoil factorisation, but $\theta_{j 1} \simeq \theta_{j 2} \simeq \theta_{j \tilde{P}}$ and $\mathbf{T}_{j} \cdot\left(\mathbf{T}_{1}+\mathbf{T}_{2}\right)=\mathbf{T}_{j} \cdot \mathbf{T}_{\tilde{P}}$: colour coherence restores factorisation, the parton j sees the two collinear partons as a single one.

Qualitative interpretation: two collinear partons

- Tree level:

- two-scale problem: collinear sub-energy $s_{12} \ll$ any other sub-energy (largeversus short-distance interactions)
- Loops:
- gauge interactions are long-range
- Interactions separately spoil factorisation, but $\theta_{j 1} \simeq \theta_{j 2} \simeq \theta_{j \tilde{P}}$ and $\mathbf{T}_{j} \cdot\left(\mathbf{T}_{1}+\mathbf{T}_{2}\right)=\mathbf{T}_{j} \cdot \mathbf{T}_{\tilde{P}}$: colour coherence restores factorisation, the parton j sees the two collinear partons as a single one.
- Both collinear partons in the final- or initial-state, otherwise colour coherence is limited by causality

The collinear projection

- The projection over the collinear limit is obtained by setting the parent parton at on-shell momenta

$$
\tilde{P}^{\mu}=p_{1, m}^{\mu}-\frac{s_{1, m} n^{\mu}}{2 n \cdot \tilde{P}}
$$

\tilde{P}^{μ} : collinear direction
n^{μ} : describes how the collinear limit is approached $\tilde{P}^{2}=0, n^{2}=0$
$z_{i}=\frac{n \cdot p_{i}}{n \cdot \widetilde{P}}$: longitudinal momentu fraction $\sum z_{i}=1$

- Factorisation holds in any arbitrary gauge, however, it is more evident in the axial gauge (physical polarisations): only diagrams where the parent parton emitted and absorbed collinear radiation

$$
\begin{aligned}
& \frac{1}{p_{12}}=\frac{1}{s_{12}} \not p_{12}=\frac{1}{s_{12}}\left(\tilde{P}+\frac{s_{12}}{2 n \cdot \tilde{P}} h\right) \simeq \frac{1}{s_{12}} u(\tilde{P}) \bar{u}(\tilde{P})+\ldots \\
& d_{\mu \nu}(k, n)=d_{\mu \nu}(\tilde{P}, n)+\ldots \simeq \epsilon_{\mu}(\tilde{P}) \epsilon_{\nu}^{*}(\tilde{P})+\ldots
\end{aligned}
$$

Splitting functions

The square of the splitting amplitude, summed over final-state colours and spins, and averaged over colours and spins of the parent parton, defines the m-parton (unpolarised) splitting function

$$
\langle P\rangle=\left(\frac{s_{1, m}}{2 \mu^{2 \epsilon}}\right)^{m-1} \overline{|\mathbf{S p}|^{2}}
$$

which is a generalisation of the customary (i.e. with $m=2$) Altarelli-Parisi splitting function

Splitting functions

The square of the splitting amplitude, summed over final-state colours and spins, and averaged over colours and spins of the parent parton, defines the m-parton (unpolarised) splitting function

$$
\langle P\rangle=\left(\frac{s_{1, m}}{2 \mu^{2 \epsilon}}\right)^{m-1} \overline{|\mathbf{S p}|^{2}}
$$

which is a generalisation of the customary (i.e. with $m=2$) Altarelli-Parisi splitting function

- Perturbarive expansion $P=P^{(0)}+P^{(1)}+P^{(2)}+\ldots$

Splitting functions

The square of the splitting amplitude, summed over final-state colours and spins, and averaged over colours and spins of the parent parton, defines the m-parton (unpolarised) splitting function

$$
\langle P\rangle=\left(\frac{s_{1, m}}{2 \mu^{2 \epsilon}}\right)^{m-1} \overline{|\mathbf{S p}|^{2}}
$$

which is a generalisation of the customary (i.e. with $m=2$) Altarelli-Parisi splitting function

- Perturbarive expansion $P=P^{(0)}+P^{(1)}+P^{(2)}+\ldots$
- Probability to emit futher radiation with a given longitudinal momenta, from the leading singular behaviour

Splitting functions

The square of the splitting amplitude, summed over final-state colours and spins, and averaged over colours and spins of the parent parton, defines the m-parton (unpolarised) splitting function

$$
\langle P\rangle=\left(\frac{s_{1, m}}{2 \mu^{2 \epsilon}}\right)^{m-1} \overline{|\mathbf{S p}|^{2}}
$$

which is a generalisation of the customary (i.e. with $m=2$) Altarelli-Parisi splitting function

- Perturbarive expansion $P=P^{(0)}+P^{(1)}+P^{(2)}+\ldots$
- Probability to emit futher radiation with a given longitudinal momenta, from the leading singular behaviour
- Universal (process independent): the same fro e+e-, DIS or hadron collisions

Exercises:

1. Proof that $\mathbf{T}_{j} \cdot\left(\mathbf{T}_{q}+\mathbf{T}_{\bar{q}}\right)=\mathbf{T}_{j} \cdot \mathbf{T}_{g}$ and test other flavour combinations (colour coherence)
2. Calculate the splitting functions for the collinear processes $q \rightarrow q g, g \rightarrow q \bar{q}$ and $g \rightarrow g g$ by using the helicity method

Hint:

$$
\begin{aligned}
& \mathbf{S p}_{q \rightarrow q_{1} g_{2}}^{(0)}=\mathbf{T}^{a_{2}} \frac{1}{s_{12}} \bar{u}\left(p_{1}\right) \phi\left(p_{2}\right) v(\tilde{P}) \\
& P_{q \rightarrow q_{1} g_{2}}^{(0)}=C_{F} \frac{1+z^{2}}{1-z} \quad z=z_{1}=\frac{n \cdot p_{1}}{n \cdot \tilde{P}} \quad z_{2}=1-z
\end{aligned}
$$

Compare with $\mathscr{M}_{q \bar{q} g}^{(0)} \simeq\left(-\imath e_{q}\right)\left(\imath g_{S}\right) \mathbf{T}^{a} \bar{u}\left(p_{1}\right) \gamma^{\mu} \nu\left(p_{2}\right)\left(\frac{p_{1} \cdot \varepsilon}{p_{1} \cdot k}-\frac{p_{2} \cdot \varepsilon}{p_{2} \cdot k}\right)$

PARTON DENSITIES (PDF)

factorisation into short distance (hard scattering = high energy) and long distance (initial and final state = low energy)

O initial-state parton densities $1 / \mathrm{GeV}=10^{-16} m$ $1 /(200 \mathrm{MeV}) \sim 10^{-15} m$

O collision remnants / underlying event

O Parton showers:
resummation of collinear physics + hadronisation at
 breaking

O final state: e.g. leptons

Looking inside the proton

non-perturbative input
scale evolution

Parton density (PDF): "probability" to find a parton of a given flavour carrying a longitudinal momentum fraction $x \in[0,1]$ of the momentum of the proton

DGLAP evolution [Dokshitzer-Gribov-Lipatov-Altarelli-Parisi 1972-1977]

DGLAP flavour structure

The proton contains both quarks and gluons: DGLAP is a matrix in flavour space

$$
\frac{\partial}{\partial \log \mu^{2}}\binom{q}{g}=\left(\begin{array}{cc}
P_{q \rightarrow q g} & P_{g \rightarrow q \bar{q}} \\
P_{q \rightarrow g q} & P_{g \rightarrow g g}
\end{array}\right) \otimes\binom{q}{g}
$$

spanning over all flavours and anti-flavours

$$
\begin{aligned}
& P_{q \rightarrow q g}=C_{F}\left(\frac{1+z^{2}}{(1-z)_{+}}+\frac{3}{2} \delta(1-z)\right) \\
& P_{q \rightarrow g q}=C_{F} \frac{1+(1-z)}{z} \\
& P_{g \rightarrow q \bar{q}}=T_{R}\left[z^{2}+(1-z)^{2}\right] \\
& P_{g \rightarrow g g}=2 C_{A}\left[\frac{z}{(1-z)_{+}}+\frac{1-z}{z}+z(1-z)\right]+b_{0} \delta(1-z)
\end{aligned}
$$

with the plus-prescription $z=1$ is soft: only soft configurations matches virtual with real corrections

$$
\int_{0}^{1} d z \frac{f(z)}{(1-z)_{+}}=\int_{0}^{1} d z \frac{f(z)-f(1)}{1-z}
$$

Parton densities

- Non-perturbative input determined from global fits to collider data, scale evolution from pQCD (NNLO)
- Vast choice: e.g. http://hepdata.cedar.ac.uk/pdfs

```
The Durham HepData Project
```

```
Reaction Database • Data Reviews • PDF Plotter
about Hepdata • Submitting Data
```

This site has now been superseded by the new hepdata.net site.
HepData Compilation of Parton Distribution Functions
On-line Unpolarized Parton Distribution Calculator with Graphical Display.

Unpolarized Parton Distributions

Access the parton distribution code, on-line calculation and graphical display of the distributions, from CTEQ, GRV, MRST/MSTW, Alekhin, ZEUS, H1, HERAPDF, BBG and NNPDF
CTEQ fortran code and grids
CTEQ-Jefferson Lab (CJ) the CJ12 PDF sets
GRV/GJR fortran code and grids
MRST fortran code and grids, $\mathrm{C}++$ code
MSTW fortran, $\mathrm{C}++$ and Mathematica codes + grids etc.
ALEKHIN fortran,C++,Mathematica code, and grids
ZEUS ZEUS 2002 PDFs, ZEUS 2005 jet fit PDFs
HERAPDF Combined H1/ZEUS page, HERAPDF1.0 paper H1 H1 2000 BBG BBG06_NS
NNPDF Non Singlet PDF code - hep-ph/0701127

Polarized Parton Distributions

Currently available parametrizations

Parton densities

- Non-perturbative input determined from global fits to collider data, scale evolution from pQCD (NNLO)
- Vast choice: e.g. http://hepdata.cedar.ac.uk/pdfs

The Durham HepData Proj Reaction Database - Data Reviews - PDF PL

This site has now been superseded by the new hepd
HepData Compilation of Parton Dis
On-line Unpolarized Parton Distribution Calc

Unpolarize Access the parton distribution code, on-line calct MRST/MSTW, Alekhin, CTEQ fortran code and grid CTEQ-Jefferson Lab (CJ) the CJ12 PDF sets GRV/GJR fortran code and grid MRST fortran code and grid MSTW fortran, C++ and Math ALEKHIN fortran,C++,Mathema ZEUS ZEUS 2002 PDFs, ZEI
HERAPDF Combined H1/ZEUS page, HERAPDF1.0 paper
H1 H1 2000
BBG BBG06_NS
NNPDF Non Singlet PDF code - hep-ph/0701127
Polarized Parton Distributions
Currently available parametrizations

NNPDF31 PDFs

NNPDF31 PDFs

- Maximum of up and down at $x=1 / 3$: three quarks sharing the proton momentum

NNPDF31 PDFs

NNPDF31 PDFs

- Maximum of up and down at $x=1 / 3$: three quarks sharing the proton momentum
- up quark $=2 \times$ down quark

NNPDF31 PDFs

NNPDF31 PDFs

Set the physics setup:		
Initial scale (GeV):	1.4142135623731	$\hat{\sim}$
Final scale (GeV):	1.4142135623731	*
Maximum flavors:	5	$\hat{\sim}$
Plot all members:	∇	
Select member:	0	*
Standard deviation (1\%):	\checkmark	
Number of points in x :	100	*
Log. x scale:	\checkmark	
Log. y scale:	\square	
Automatic (x, y) range:	\square	
Minimum x :	1e-2	ล
Maximum x :	1	$\hat{*}$
Minimum y :	-0.1	人
Maximum y :	2.51	ล

Confirm

NNPDF31 PDFs

- Maximum of up and down at $x=1 / 3$: three quarks sharing the proton momentum
- up quark $=2 \times$ down quark
- gluon density evolves faster: colour charge $C_{A}=3$ versus quark colour charge $C_{F}=4 / 3$

NNPDF31 PDFs

Set the physics setup:		
Initial scale (GeV):	1.4142135623731	*
Final scale (GeV):	1.4142135623731	$\hat{\sim}$
Maximum flavors:	5	ล
Plot all members:	\square	
Select member:	0	*
Standard deviation (1\%):	\checkmark	
Number of points in x :	100	$\hat{\imath}$
Log. x scale:	\square	
Log. y scale:	\square	
Automatic (x, y) range:	\square	
Minimum x :	1e-2	*
Maximum x :	1	\hat{v}
Minimum y :	-0.1	$\hat{\sim}$
Maximum y :	$2.5 \mid$	$\hat{\sim}$

- Maximum of up and down at $x=1 / 3$: three quarks sharing the proton momentum
- up quark $=2 \times$ down quark
- gluon density evolves faster: colour charge $C_{A}=3$ versus quark colour charge $C_{F}=4 / 3$
- more antiquarks at high energies from gluon splitting

PDFs strategy in a nutshell

- Make an ansatz for the functional form of the PDFs at some fixed low scale value ($Q_{0} \sim 1 \mathrm{GeV}$): e.g. in MRST/MSTW

$$
\begin{array}{ll}
x u_{V}=A_{u} x^{\eta_{1}}(1-x)^{\eta_{2}}\left(1+\epsilon_{u} \sqrt{x}+\gamma_{u} x\right) & u_{V}=u-\bar{u} \\
x d_{V}=A_{d} x^{\eta_{3}}(1-x)^{\eta_{4}}\left(1+\epsilon_{d} \sqrt{x}+\gamma_{d} x\right) & d_{V}=d-\bar{d} \\
x g=A_{g} x^{-\lambda_{g}}(1-x)^{\eta_{g}}\left(1+\epsilon_{g} \sqrt{x}+\gamma_{g} x\right) &
\end{array}
$$

- NNPDF use neural networks and does not need such explicit functional form
- Collect data at various (x, Q^{2}) from different experiments (e.g. DIS), use DGLAP equations to evolve down to Q_{0} and fit parameters, including α_{S}
- Ensure sum rules: (Gottfried, momentum, ...). $\quad \int d x x \sum_{i} f_{i}\left(x, Q^{2}\right)=1$

Parton densities

- Differences are due to different:

Data sets in fits, parameterization of starting distributions, order of pQCD evolution, power law contributions, nuclear target corrections, resummation corrections (In 1/x, ...), treatment of heavy quarks, strong coupling, choice of factorization and renormalization scales.

- at least 5-10\% uncertainty in theoretical predictions

Gluon-Gluon, luminosity

JETS

factorisation into short distance (hard scattering = high energy) and long distance (initial and final state = low energy)

What's a jet

What's a jet

- a bunch of energetic and collimated particles

What's a jet

- a bunch of energetic and collimated particles
- 60\% of LHC papers use jets [Salam, Soyez]

Gluon emission
Why and how do we see jets?

$$
\alpha_{\mathrm{S}} \int \frac{d E}{E} \frac{d \theta}{\theta}
$$

higher probability at small angle (collinear) and small energy (soft)

Parton level

Gluon emission
Why and how do we see jets?

$$
\alpha_{\mathrm{S}} \int \frac{d E}{E} \frac{d \theta}{\theta}
$$

higher probability at small angle (collinear) and small energy (soft)

Parton level

Gluon emission
Why and how do we see jets?

$$
\alpha_{\mathrm{S}} \int \frac{d E}{E} \frac{d \theta}{\theta}
$$

higher probability at small angle (collinear) and small energy (soft)

Non-perturbative transition to hadrons
$\alpha_{\mathrm{S}} \sim 1 \quad \Lambda_{\mathrm{QCD}} \sim 200 \mathrm{MeV}$

Parton level

Gluon emission

Why and how do we see jets?

$$
\alpha_{\mathrm{S}} \int \frac{d E}{E} \frac{d \theta}{\theta}
$$

higher probability at small angle (collinear) and small energy (soft)

Non-perturbative transition to hadrons

$$
\alpha_{\mathrm{S}} \sim 1 \quad \Lambda_{\mathrm{QCD}} \sim 200 \mathrm{MeV}
$$

Parton level
p

$$
\begin{array}{cc}
\left\{j_{k}\right\} \\
\text { jets } & \\
& \\
& \\
\text { jinal-state } \\
\text { 4-momenta }
\end{array}
$$

Gluon emission

Why and how do we see jets?

$$
\alpha_{\mathrm{S}} \int \frac{d E}{E} \frac{d \theta}{\theta}
$$

higher probability at small angle (collinear) and small energy (soft)

Non-perturbative transition to hadrons

$$
\alpha_{\mathrm{S}} \sim 1 \quad \Lambda_{\mathrm{QCD}} \sim 200 \mathrm{MeV}
$$

Parton level

- Clearly
a two-jet event

- Clearly
a two-jet event

- Three- or four-jet event?
- Depends on the jet resolution parameter

The k_{T} algorithm at hadron colliders

- Define distance among particles: e.g. $d_{i j}=\left(p_{i}+p_{j}\right)^{2}$

The k_{T} algorithm at hadron colliders

- Define distance among particles: e.g. $d_{i j}=\left(p_{i}+p_{j}\right)^{2}$
- Is this distance smaller than a resolution parameter? Combine into the same jet recursively

The k_{T} algorithm at hadron colliders

- Define distance among particles: e.g. $d_{i j}=\left(p_{i}+p_{j}\right)^{2}$
- Is this distance smaller than a resolution parameter? Combine into the same jet recursively
- At hadron colliders there are beams, introduce also ""beam distance" $d_{i B}=p_{T i}^{2}=2 E_{i}^{2}\left(1-\cos \theta_{i B}\right)$

The k_{T} algorithm at hadron colliders

- Define distance among particles: e.g. $d_{i j}=\left(p_{i}+p_{j}\right)^{2}$
- Is this distance smaller than a resolution parameter? Combine into the same jet recursively
- At hadron colliders there are beams, introduce also ""beam distance" $d_{i B}=p_{T i}^{2}=2 E_{i}^{2}\left(1-\cos \theta_{i B}\right)$

Inclusive k_{T}

$$
d_{i j}=\min \left(p_{T i}^{2}, p_{T_{j}}^{2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}} \quad d_{i B}=p_{T i}^{2} \quad \Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2}
$$

- Compute the smallest distance $d_{i j}$ or $d_{i B}$
- If $d_{i j}$, cluster i and j together
- If $d_{i B}$, call i a jet and remove from the list of particles
- Repeat until no particle is left
- Two parameters R and minimal transverse momentum $p_{T i}>p_{T, \text { min }}$

The k_{T} algorithm at hadron colliders

- Define distance among particles: e.g. $d_{i j}=\left(p_{i}+p_{j}\right)^{2}$
- Is this distance smaller than a resolution parameter? Combine into the same jet recursively
- At hadron colliders there are beams, introduce also ""beam distance" $d_{i B}=p_{T i}^{2}=2 E_{i}^{2}\left(1-\cos \theta_{i B}\right)$

Inclusive k_{T}

$$
d_{i j}=\min \left(p_{T i}^{2}, p_{T_{j}}^{2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}} \quad d_{i B}=p_{T i}^{2} \quad \Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2}
$$

- Compute the smallest distance $d_{i j}$ or $d_{i B}$
- If $d_{i j}$, cluster i and j together
- If $d_{i B}$, call i a jet and remove from the list of particles
- Repeat until no particle is left
- Two parameters R and minimal transverse momentum $p_{T i}>p_{T, \text { min }}$

$$
y=\frac{1}{2} \log \frac{E+p_{z}}{E-p_{z}} \neq \eta=-\log (\tan (\theta / 2)) \quad \text { for massive particles }
$$

The anti- k_{T} algorithm

[Cacciari, Salam, Soyez 08]

- k_{T} has a physical meaning: the stronger divergence between a pair of particles, the more likely it is they will be associated with each other

The anti- k_{T} algorithm

[Cacciari, Salam, Soyez 08]

- k_{T} has a physical meaning: the stronger divergence between a pair of particles, the more likely it is they will be associated with each other
- However: ATLAS and CMS use anti- k_{T}

The anti- k_{T} algorithm

- k_{T} has a physical meaning: the stronger divergence between a pair of particles, the more likely it is they will be associated with each other
- However: ATLAS and CMS use anti- k_{T}
anti- k_{T}
$d_{i j}=\min \left(p_{T i}^{-2}, p_{T j}^{-2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}} \quad d_{i B}=p_{T i}^{-2} \quad \Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2}$
- Cluster hardest particles first
- Cone-shaped cones but it is IRC safe, contrary to cone algorithms widely used at Tevatron
- Easier to energy jet energy scale right

The anti- k_{T} algorithm

[Cacciari, Salam, Soyez 08]

- k_{T} has a physical meaning: the stronger divergence between a pair of particles, the more likely it is they will be associated with each other
- However: ATLAS and CMS use anti- k_{T}
anti- k_{T}
$d_{i j}=\min \left(p_{T i}^{-2}, p_{T j}^{-2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}} \quad d_{i B}=p_{T i}^{-2} \quad \Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2}$
- Cluster hardest particles first
- Cone-shaped cones but it is IRC safe, contrary to cone algorithms widely used at Tevatron
- Easier to energy jet energy scale right
- Cambridge/Aachen: $d_{i j}=\frac{\Delta R_{i j}^{2}}{R^{2}}$

[^1]藻

CONCLUSIONS

- Exciting times ahead with huge amount of collider data
- Challenging our theoretical understanding to meet experimental demands
- Parallel developments in maths and quantum computing
- QCD is the most non-Abelian theory that can be probed at high-energy colliders

[^0]: discoveries in elementary particle physics has been that of the existence of the complex plane", "... the theory of functions of complex variables plays the role not of a mathematical tool, but of a fundamental description of nature inseparable from physics ...
 J. Schwinger, Particles, Sources, and Fields, Vol.1, p. 36

 Here are the words of some enthusiast: "One of the most remarkable

[^1]: G. Rodrigo - Strong interactions at colliders

