Graviton scattering amplitudes in first quantisation

James P. Edwards ifm.umich.mx/~jedwards

XIX Mexican School of Particles and Fields August 2021

In collaboration with **Christian Schubert** (UMSNH) and Memo Estrada Gonzalez (UMSNH) Thanks to CONACyT for funding through a "Ciencias de Frontera" project

Outline

Introduction

- Scattering in QFT
- Amplitude calculations
- Strings

2 Worldline approach

- Worldline representation
- Scattering amplitudes

BDS rules

- Closed strings
- Graviton rules
- Example

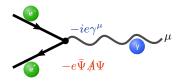
Scattering in QFT Amplitude calculations Strings

Field theory

Let's revise standard QED: a Dirac field coupled to a gauge potential $A(x) = A_{\mu}(x)dx^{\mu}$ described by the familiar Dirac action with "minimal coupling"

$$S[\Psi, A] = \int d^{D}x \left[-\frac{1}{4} \mathrm{tr} F^{2} + \bar{\Psi} (i \not\!\!D - m) \Psi \right]$$

where the covariant derivative is $D_{\mu} := \partial_{\mu} + ieA_{\mu}$, which couples the fields together and produces the interaction vertex of the quantum theory



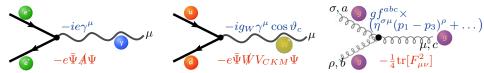
We can interpret "particles" as excitations of the quantum field about "the vacuum," a state of minimal energy denoted by $|0\rangle$:

$$|p,\sigma\rangle = \hat{a}^{\dagger}_{p,\sigma}|0\rangle \qquad \qquad |k,h\rangle = \hat{\alpha}^{\dagger}_{k,h}|0\rangle$$

Scattering in QFT Amplitude calculations Strings

Interactions

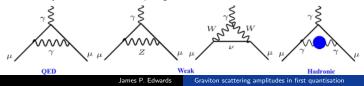
It can be useful to separate the action into a "free" part and an "interaction" part which couples the fields together – these indicate the interaction vertices of the theory:



Working with canonical quantisation in the interaction picture the fundamental objects of interest are **correlation functions**:

$$\langle \Omega | T \{ \hat{\Psi}(x_1) \dots \hat{\overline{\Psi}}(x_n) \dots \hat{A}_{\mu_N}(x_N) \} | \Omega \rangle$$

In perturbation theory we use the above vertices to form Feynman diagrams that contribute order by order in the coupling constants:



Scattering in QFT Amplitude calculations Strings

Hunting simplifications

Perturbative calculations of amplitudes often involve tedious manipulation of long expressions....

But lead to surprisingly simple final results:

Weisskopf was so unhappy with the conventional calculation of the Compton cross section that he asked me, and several other Ph.D. students, to find a better way to get the simple final result. (*R. Stora*).

There is also a **factorial explosion** in the number of diagrams at a given loop order that makes organisation of the calculation progressively more difficult. Example: electron g - 2 (QED):

- 1 diagram at one-loop order: $\frac{g-2}{2} + = \frac{1}{2} \frac{\alpha}{\pi}$ (Schwinger^[1])
- 7 diagrams at two-loops: $\frac{g-2}{2} + = -0.328 \dots \left(\frac{\alpha}{\pi}\right)^2$ (Petermann / Sommerfeld^[2])
- 72 diagrams at three-loops: $\frac{g-2}{2} + = 1.181 \dots \left(\frac{\alpha}{\pi}\right)^3$ (Laporta, Remiddi^[3])
- 891 diagrams at 4-loops: $\frac{g-2}{2} + = -1.912...\left(\frac{\alpha}{\pi}\right)^4$ (Laporta^[4])
- 12672 diagrams at 5-loop order (some numerical evaluations)

¹Schwinger, J.S. Phys. Rev. 73, (1948), 416–417.
²Petermann, Helv. Phys. Acta 30, (1957), 407–408 & Sommerfield, C.M. Ann. Phys. 5 (1958), 26–57
³Laporta, S., Remiddi, E. Phys. Lett. B 379, (1996), 283–291
⁴Laporta, S. Phys. Lett. B 772 (2017), 232–238

Scattering in QFT Amplitude calculations Strings

Miraculous cancellations

Natural question: iWhy are these final results so small? Aside from this, for g-2 there is also a cancellation of spurious UV and IR divergences between diagrams^[5] due to gauge symmetry.

 $^{^{5}}$ See G. V. Dunne et al., J. Phys. Conf. Ser.37, 59–72 (2006) for a discussion on the influence of gauge cancellations on divergence structure in QFT which is still not very well understood.

Scattering in QFT Amplitude calculations Strings

Miraculous cancellations

Natural question: iWhy are these final results so small? Aside from this, for g - 2 there is also a cancellation of spurious UV and IR divergences between diagrams^[5] due to gauge symmetry.

Is this gauge invariance also responsible for the spectacular cancellations of the finite part of the amplitude?

Motivated P. Cvitanović to examine the contributions from individual "gauge-sets" – sets of gauge invariant diagrams. The contributions of different gauge sets are very close to being integer multiples of $\pm \frac{1}{2} \times (\frac{\alpha}{\pi})^n$!

Cvitanović also made the conjecture that this suggests that the perturbative series for g-2 may in fact converge, having asymptotic form

$$\frac{g-2}{2} = \sum_{n=1}^{\infty} c_n \left(\frac{\alpha}{\pi}\right)^{2n}, \qquad |c_n| \sim \frac{n}{2},$$
(1)

rather than the usual factorial growth.

 5 See G. V. Dunne et al., J. Phys. Conf. Ser.37, 59–72 (2006) for a discussion on the influence of gauge cancellations on divergence structure in QFT which is still not very well understood.

Scattering in QFT Amplitude calculations Strings

Graviton amplitudes

In the case of gravity the explosion in Feynman diagrams is even more apparent.

We can see this by expanding the Einstein-Hilbert action about a flat space metric,

$$S_{\rm EH} = \frac{2}{\kappa^2} \int d^D x \sqrt{-g} R, \qquad g_{\mu\nu}(x) \to \eta_{\mu\nu} + \kappa h_{\mu\nu}(x) \,.$$

After fixing the diffeomorphism symmetry for the metric perturbation we get a propagator (de Donde gauge)

$$P_{\mu\nu,\alpha\beta}(k) = \frac{1}{2} \frac{i}{k^2 + i\epsilon} \left[\eta_{\mu\alpha} \eta_{\nu\beta} + \eta_{\mu\beta} \eta_{\nu\alpha} - \frac{2}{D-2} \eta_{\mu\nu} \eta_{\alpha\beta} \right].$$

For later: The final "trace term" makes the organisation of the perturbative expansion very different to the string theory case.

Scattering in QFT Amplitude calculations Strings

Graviton amplitudes

In the case of gravity the explosion in Feynman diagrams is even more apparent.

We can see this by expanding the Einstein-Hilbert action about a flat space metric,

$$S_{\rm EH} = \frac{2}{\kappa^2} \int d^D x \sqrt{-g} R, \qquad g_{\mu\nu}(x) \to \eta_{\mu\nu} + \kappa h_{\mu\nu}(x) \,.$$

After fixing the diffeomorphism symmetry for the metric perturbation we get a propagator (de Donde gauge)

$$P_{\mu\nu,\alpha\beta}(k) = \frac{1}{2} \frac{i}{k^2 + i\epsilon} \left[\eta_{\mu\alpha} \eta_{\nu\beta} + \eta_{\mu\beta} \eta_{\nu\alpha} - \frac{2}{D-2} \eta_{\mu\nu} \eta_{\alpha\beta} \right].$$

For later: The final "trace term" makes the organisation of the perturbative expansion very different to the string theory case.

There are infinitely many vertices whose Feynman rules involve large ($O(10^{2+})$) kinematic factors involving the participating momenta:

Scattering in QFT Amplitude calculations Strings

Strings and fields

During the development of string theory (around the 70s) it was discovered that its **infinite** tension limit is closely related to the quantum field theory of point particles. J. Scherk & H. H. Schwarz, T. Yoneya, J. L. Gervais, A. Neveu.

String theory is a first quantised theory – suggests we can do $S\mbox{-matrix}$ calculations by analysing scattering amplitudes of a single string in the appropriate limit.

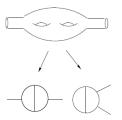


Figure: Amplitude in ϕ^3 theory reorganised into a single string process: there are in general fewer string diagrams corresponding to the field theory ones.

This relation was studied more systematically in the 90s by Bern and Kosower for QCD and Bern, Dunbar, Shimada and Norridge for gravity. Final products are so-called "Master Formulae" and auxiliary rules which can be used to generate field theory

Scattering in QFT Amplitude calculations Strings

String theory amplitudes

String theory amplitudes can be written in Polyakov's formulation as a path integral over string worldsheets Σ involving insertions of **vertex operators** for external states (here for bosonic strings):

$$\langle V_1(k_1,\varepsilon_1)\ldots V_N(k_1,\varepsilon_N)\rangle \sim \int \mathcal{D}h(\tau,\sigma)\int \mathcal{D}X(\tau,\sigma)V_1(k_1,\varepsilon_1)\ldots V_N(k_1,\varepsilon_N)e^{-S[X,h]}$$

with worldsheet action

$$S[X,h] = \frac{1}{4\pi\alpha'} \int_{\Sigma} d^2 \sigma \sqrt{h} h^{\alpha\beta} \partial_{\alpha} X \cdot \partial_{\beta} X$$

and where for scalar, photon and graviton states we have

Scattering in QFT Amplitude calculations Strings

Amplitudes on the annulus

On a given Riemann surface the reparameterisation symmetry allows the metric to be **gauge-fixed** to a conformally flat one, and eventually (in the critical dimension) $\int Dh$ reduces to a Riemann integral over a finite space of conformal equivalence classes.

The "matter" path integral is Gaussian and can be computed using Wick's theorem. On the annulus, the fundamental contraction evaluates to a simple function,

$$\langle X^{\mu}(\tau_1) X^{\nu}(\tau_2) \rangle = -\eta^{\mu\nu} \Big[\log \left| 2\sinh(\tau_1 - \tau_2) \right| - \frac{(\tau_1 - \tau_2)^2}{\tau} - 4e^{-2\tau} \sinh^2\left(\tau_1 - \tau_2\right) \Big]$$

$$\equiv \eta^{\mu\nu} G(\tau_1 - \tau_2; \tau)$$

where $q = e^{-2\tau}$ is the modulus parameterising the ratio of the annulus' radii.

Scattering in QFT Amplitude calculations Strings

Amplitudes on the annulus

On a given Riemann surface the reparameterisation symmetry allows the metric to be **gauge-fixed** to a conformally flat one, and eventually (in the critical dimension) $\int Dh$ reduces to a Riemann integral over a finite space of conformal equivalence classes.

The "matter" path integral is Gaussian and can be computed using Wick's theorem. On the annulus, the fundamental contraction evaluates to a simple function,

$$\langle X^{\mu}(\tau_1) X^{\nu}(\tau_2) \rangle = -\eta^{\mu\nu} \Big[\log \left| 2\sinh(\tau_1 - \tau_2) \right| - \frac{(\tau_1 - \tau_2)^2}{\tau} - 4e^{-2\tau} \sinh^2\left(\tau_1 - \tau_2\right) \Big]$$

$$\equiv \eta^{\mu\nu} G(\tau_1 - \tau_2; \tau)$$

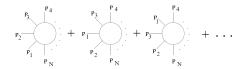
where $q = e^{-2\tau}$ is the modulus parameterising the ratio of the annulus' radii.

The infinite tension limit corresponds to $\tau \to \infty$ and gives the leading contributions

$$G(\tau_1 - \tau_2) \sim \text{const} - \left[|\tau_1 - \tau_2| - \frac{(\tau_1 - \tau_2)^2}{\tau} \right], \quad \dot{G}(\tau_1 - \tau_2) \sim - \left[\sigma(\tau_1 - \tau_2) - 2\frac{\tau_1 - \tau_2}{\tau} \right] + \dots$$

Universal rules

This treatment is appropriate to produce the one-loop scattering amplitudes for external gauge bosons in **various** field theories:



The generation of field theory amplitudes is based upon the so-called kinematic factor

$$\mathcal{K}_N \sim \int \prod_{i=1}^N du_i \prod_{i < j} \exp\left[G_{ij}k_i \cdot k_j + i\dot{G}_{ij}(k_i \cdot \varepsilon_j - k_j \cdot \varepsilon_i) + \ddot{G}_{ij}\varepsilon_i \cdot \varepsilon_j\right]$$

which acts as a kind of generating function for amplitudes.

In fact it turns out that there are a set of replacement rules which provide a means to generate amplitudes for different theories.

Scattering in QFT Amplitude calculations Strings

Comparison with standard approach

It is worth pausing to consider the advantages these "Bern-Kosower Rules" for constructing amplitudes have over the conventional approach to perturbation theory:

- Better organisation of gauge invariance (but see worldline approach later).
- Loop momentum integrals already done so fewer kinematic invariants that enter intermediate calculations.
- Universal basis of the rules handling different field theories amounts to adapting the replacement rules for the internal loop.
- Combines nicely with space-time supersymmetry and other internal symmetries (spin, colour etc).

Later on we shall see how to adapt this method to describe graviton amplitudes based only on ϕ^3 vertices and a set of replacement rules for ensuring that the correct particle degrees of freedom circulate in the loop.

Scattering in QFT Amplitude calculations Strings

Comparison with standard approach

It is worth pausing to consider the advantages these "Bern-Kosower Rules" for constructing amplitudes have over the conventional approach to perturbation theory:

- Better organisation of gauge invariance (but see worldline approach later).
- Loop momentum integrals already done so fewer kinematic invariants that enter intermediate calculations.
- Universal basis of the rules handling different field theories amounts to adapting the replacement rules for the internal loop.
- Combines nicely with space-time supersymmetry and other internal symmetries (spin, colour etc).

Later on we shall see how to adapt this method to describe graviton amplitudes based only on ϕ^3 vertices and a set of replacement rules for ensuring that the correct particle degrees of freedom circulate in the loop.

First we look at how to derive this representation of scattering amplitudes without the need to refer to string theory...

Worldline representation Scattering amplitudes

The worldline representation

The **worldline formalism** is an alternative method for field quantisation. The **worldline** method is based on the *first quantisation* of relativistic particles.

In fact it was proposed by **Feynman**^[6] and developed in pioneering work by **Strassler**^[6]:

NOVEMBER 1, 1950 PRYSICAL REVIEW NUCLEA Nuclear Physics B 385 (1992) 145-184 Mathematical Formulation of the Quantum Theory of Electromagnetic Interaction HYSICS North-Holland R. P. FEYMAN Department of Physics, Cornell University, Ithuca, New York (Received June 8, 1950) The validity of the rules given in previous papers for the solution of prablems in quantum electrodynamics, is established. Starting with Fermi's formulation of the field as a set of harmonic oscillators, the effect of is escalatory in the second of the Lagrangian form of quantum mechanics. These establishes are expression for the effect of all virtual photons valid to all orders in e/de. It is shown that evaluation of this expression Field theory without Feynman diagrams: as a power series in et/he gives just the terms expected by the aforementioned rules. In addition, a relation is established between the astplitude for a given process is an arbitrary anquantized One-loop effective actions potential and in a quantum electrodynamical field. This relation permits a simple general statement of A description, in Lagrangian quantum-mechanical form, of particles satisfying the Klein-Gordon equation Matthew I. Strassler * Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, USA 1. INTRODUCTION net effect of the field is a delayed interaction of the N two previous papers' rules were given for the particles. It is possible to do this easily only if it is not accusary at the same time to analyze completely the Received 20 March 1997 Accepted for publication 23 Juno 1992 - conception or use many dimension or any process in lectrodynamics, to each order in e²/hc. No complete
motion of the particles. The only advantage in our rephases of the form of cusatum mechanics in C is to In memory of Brian J. Warr $\varphi(x, n+s) = \int \exp i s \left[-\frac{(x_n - x_n)^2}{2\pi} - \frac{1}{2} \left(\frac{x_n - x_n}{2\pi} \right) (A_\mu(x) + A_\mu(x)) \right]$ APPENDIX A. THE KLEIN-GORDON EQUATION. In this paper the connection between standard perturbation theory techniques and the new $\varphi(z', y)d^4r_F(2\pi i \epsilon)^{-1}(-2\pi i \epsilon)^{-1}$ (3A) In this Amendix we describe a formulation of the countiers Been-Kousser calculational rules for gauge theory is clarified. For one-loop effective actions of a particle of spin zero which was first used to obtain the roles where $(x_0 - x_0')^2$ means $(x_0 - x_0')(x_0 - x_0')$, $d^3x_1 - dx_1'dx_1'dx_1'$ and the sign of the normalising factor is changed for the x_0 scalars, Dirac spinors, and vector bosons in a background gauge field, Bern-Kosower type rules on in II for such particles. The complete physical significance the equations has not been analyzed thoroughly so that it may are derived without the use of either string theory or Feynman disgrams. The effective action is comparent since the component has the reversed size is its quadratic coefficient in the exponential, in accordance with our written as a one-dimensional path integral, which can be calculated to any order in the gauge ion fermulation of Pauli and Weisskonf. This can be done in a summation convertion $s_{ab} = a_{b} = a_{b} - a_{b} - a_{b} = b_{b}$. Equation (1A), as can be writed readily as described in C. So: 6, is equivacompline: evaluation leads to Feynman parameter integraly directly, bypaying the usual algebra. inper analogous in the derivation of the rales for the Dirac required from Feynman diagrams, and leading to compact and organized expressions. This nation given in I or from the Schwinger-Temorage formulation* lent to first order in s. to Eo. (2A). Hence, by repeated use of this formalism is valid off-shell, is explicitly gauge invariant, and can be extended to a number of a maaner described, for example, by Robrich." The formulation equation the wave function at up = ns can be represented in terms on here is therefore not necessary for a description of suin other field theories. of thest at most have $\varphi(x_{p,n_j}, \mathbf{x}_j) = \int \exp{-\frac{i\epsilon}{2} \sum_{i=1}^{n} \int \left(\frac{x_{p,i} - x_{p,i-1}}{2}\right)}$ We want with the Kleit-Gonian constiant $(i\phi/\partial x_{s}-A_{s})^{s}\phi\rightarrow n^{s}\phi$ 114 1. Introduction $+\epsilon^{-1}(x_{k,i}-x_{k,i-1})(A_{\mu}(x_{i})+A_{\mu}(x_{i-1}))$ in the wave function \$ of a particle of mass with a given externa cential d., We shall try to represent this in a manner analogue In the past year significant advances have been made in techniques for calculat- $\varphi(\pi_{s,h},0) \prod_{i=1}^{n-1} (d^i \pi_i / 4 q^i d^i)$, (4) ing one-loop scattering amolitudes in gauge theories. Following on the successes of

⁶Phys. Rev. **E80**, 3 (1950), 440

⁷Nucl. Phys. B385, (1992), 145

James P. Edwards Graviton scattering amplitudes in first quantisation

Worldline representation Scattering amplitudes

Fundamental idea

Here we illustrate the simplest construction: of the effective action in the QED of a scalar field coupled to an (Abelian) electromagnetic potential.

Integrating over the degrees of freedom of the scalar we define ($D\equiv\partial+ieA$)

$$\Gamma[A] = \log\left[\int \mathscr{D}\left(\bar{\Phi}\Phi\right) \exp\left(-\int d^4x \,\bar{\Phi}\left(-D^2 + m^2\right)\Phi\right)\right]$$
$$= -\log \operatorname{Det}\left(-D^2 + m^2\right)$$

Worldline representation Scattering amplitudes

Fundamental idea

Here we illustrate the simplest construction: of the effective action in the QED of a scalar field coupled to an (Abelian) electromagnetic potential.

Integrating over the degrees of freedom of the scalar we define ($D\equiv\partial+ieA$)

$$\begin{split} \Gamma\left[A\right] &= \log\left[\int \mathscr{D}\left(\bar{\Phi}\Phi\right)\exp\left(i\int d^{4}x\,\bar{\Phi}\left(-D^{2}+m^{2}\right)\Phi\right)\right] \\ &= -\mathrm{Tr}\,\log(-D^{2}+m^{2}) \\ &= \int_{0}^{\infty}\frac{dT}{T}\int d^{D}x\,\langle x|\mathrm{e}^{iT\left(-D^{2}+m^{2}\right)}|x\rangle, \end{split}$$

which is finally expressed as a transition amplitude for auxiliary particles traversing closed loops in Minkowski space:

$$\Gamma[A] = \int_0^\infty \frac{dT}{T} e^{-im^2 T} \oint_{PBC} \mathscr{D}x \, \mathrm{e}^{iS[x]}$$

with the worldline action (scalar QED)

$$S[x] = \int_0^T d\tau \left[\frac{\dot{x}^2}{4} + eA(x) \cdot \dot{x}\right]$$

Worldline representation Scattering amplitudes

Worldline representation

The effective action contains the quantum modifications to the dynamics of the gauge field (here to one-loop order). Our worldline representation in spinor QED amounts to

$$\Gamma[\mathbf{A}] = -\frac{1}{2} \int_0^\infty \frac{dT}{T} e^{-im^2 T} \oint_{PBC} \mathscr{D}x \oint_{ABC} \mathscr{D}\psi \, e^{iS[x,\psi]},$$

with

$$S[x, \psi] = \int_0^T d\tau \left[\frac{\dot{x}^2}{4} + \frac{i}{2} \psi \cdot \dot{\psi} + eA(x) \cdot \dot{x} + ie\psi^{\mu} F_{\mu\nu}(x)\psi^{\nu} \right]$$

that describes the propagation of an auxiliary particle whose *closed trajectory* is described by the bosonic variables $x^{\mu}(\tau)$ with its spin represented by the Grassmann fields $\psi^{\mu}(\tau)$ along the worldline coupled to an external electromagnetic field, $A_{\mu}(x)$.

There is also a diagrammatic representation, organised according to the number of interactions with the background field, here given in momentum space as:

$$\Gamma[A] \wedge \bigcirc = \overset{A(k_1)}{\underset{A(k_2)}{\overset{A(k_2)}{\underset{A(k_4)}{\overset{A(k_3)}{\overset{A$$

Worldline representation Scattering amplitudes

1-loop amplitudes

1-loop photon scattering amplitudes in vacuum are extracted by specialising the gauge potential to a sum of asymptotic wavefunctions of fixed momenta and polarisations:

$$A_{\mu}(x) = \sum_{i=1}^{N} \varepsilon_{i\mu} \mathrm{e}^{ik_i \cdot x}$$

We then expand the "interaction exponential" to multi-linear order in the ε_i . The path integral is conveniently computed in **Euclidean** space...

$$\Gamma\left[\{k_i,\varepsilon_i\}\right] = (-ie)^N \int_0^\infty \frac{dT}{T} e^{-m^2T} \oint_{PBC} \mathscr{D}x \oint_{ABC} \mathscr{D}\psi \, e^{-\int_0^T d\tau \left[\frac{\dot{x}^2}{4} + \frac{1}{2}\psi \cdot \dot{\psi}\right]} \prod_{i=1}^N V[k_i,\varepsilon_i],$$

where the (Euclidean) free particle action is now quadratic in the fields and we have introduced a product of "vertex operators" familiar from string theory:

$$V[k,\varepsilon] = \int_0^T d\tau \big[\varepsilon \cdot \dot{x}(\tau) - i\psi(\tau) \cdot f \cdot \psi(\tau)\big] \mathrm{e}^{ik \cdot x(\tau)} \, .$$

Worldline representation Scattering amplitudes

Master formula

The path integral is now Gaussian and can be evaluated using Wick's theorem after separating off the zero mode, $x^{\mu}(\tau) \rightarrow x^{\mu}_{0} + q^{\mu}(\tau)$, based on the Green functions

$$\langle q^{\mu}(\tau_i)q^{\nu}(\tau_j)\rangle_{\perp} = -G_{Bij}\eta^{\mu\nu}, \quad G_{Bij} \equiv G_B(\tau_i,\tau_j) = |\tau_i - \tau_j| - \frac{(\tau_i - \tau_j)^2}{T}$$

 $\langle \psi^{\mu}(\tau_i)\psi^{\nu}(\tau_j)\rangle = \frac{1}{2}G_{Fij}, \quad G_{Fij} \equiv G_F(\tau_i,\tau_j) = \sigma(\tau_i - \tau_j).$

Thus, we recover the Bern-Kosower Master Formula (scalar QED for brevity):

$$\Gamma_{\text{scal}}[\{k_i, \varepsilon_i\}] = (-ie)^N (2\pi)^D \delta^D \left(\sum_i k_i\right) \int_0^\infty \frac{dT}{T} (4\pi T)^{-\frac{D}{2}} e^{-m^2 T} \prod_{i=1}^N \int_0^T d\tau_i \\ \times e^{\frac{1}{2} \sum_{i,j=1}^N G_{Bij} k_i \cdot k_j - 2i\dot{G}_{Bij} \varepsilon_i \cdot k_j + \ddot{G}_{Bij} \varepsilon_i \cdot \varepsilon_j} \Big|_{\text{lin } \varepsilon_1 \dots \varepsilon_N}$$

iEventual integration over proper time T gives Feynman parameterised denominator!

Worldline representation Scattering amplitudes

Master formula

The path integral is now Gaussian and can be evaluated using Wick's theorem after separating off the zero mode, $x^{\mu}(\tau) \rightarrow x^{\mu}_{0} + q^{\mu}(\tau)$, based on the Green functions

$$\langle q^{\mu}(\tau_i)q^{\nu}(\tau_j)\rangle_{\perp} = -G_{Bij}\eta^{\mu\nu}, \quad G_{Bij} \equiv G_B(\tau_i,\tau_j) = |\tau_i - \tau_j| - \frac{(\tau_i - \tau_j)^2}{T}$$

$$\langle \psi^{\mu}(\tau_i)\psi^{\nu}(\tau_j)\rangle = \frac{1}{2}G_{Fij}, \quad G_{Fij} \equiv G_F(\tau_i,\tau_j) = \sigma(\tau_i - \tau_j).$$

Thus, we recover the Bern-Kosower Master Formula (scalar QED for brevity):

$$\Gamma_{\text{scal}}[\{k_i, \varepsilon_i\}] = (-ie)^N (2\pi)^D \delta^D \left(\sum_i k_i\right) \int_0^\infty \frac{dT}{T} (4\pi T)^{-\frac{D}{2}} e^{-m^2 T} \prod_{i=1}^N \int_0^T d\tau_i \\ \times \left. e^{\frac{1}{2} \sum_{i,j=1}^N G_{Bij} k_i \cdot k_j - 2i\dot{G}_{Bij} \varepsilon_i \cdot k_j + \ddot{G}_{Bij} \varepsilon_i \cdot \varepsilon_j} \right|_{\text{lin } \varepsilon_1 \dots \varepsilon_N}$$

(Momentum conservation came from the integral over x_0).

Eventual integration over proper time T gives Feynman parameterised denominator!

Closed strings Graviton rules Example

Gravity replacement rules

The rules for *on-shell* graviton scattering were derived from closed string theory by Bern, Dunbar and Shimada in 1993^[7] and applied by Dunbar and Norridge to calculate the one-loop four-graviton amplitude in quantum gravity^[8].

Here will recapitulate the rules rather than deriving them from string theory.

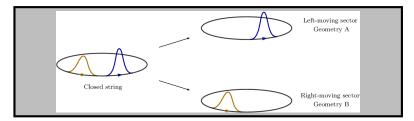
Closed strings Graviton rules Example

Gravity replacement rules

The rules for *on-shell* graviton scattering were derived from closed string theory by Bern, Dunbar and Shimada in $1993^{[7]}$ and applied by Dunbar and Norridge to calculate the one-loop four-graviton amplitude in quantum gravity^[8].

Here will recapitulate the rules rather than deriving them from string theory.

In this case we have two "sectors" that begin life as distinct contributions to the amplitude coming from left-moving and right-moving string modes:



Closed strings Graviton rules Example

Gravity replacement rules

The rules for *on-shell* graviton scattering were derived from closed string theory by Bern, Dunbar and Shimada in 1993^[9] and applied by Dunbar and Norridge to calculate the one-loop four-graviton amplitude in quantum gravity^[10].

Here will recapitulate the rules rather than deriving them from string theory.

In this case we have two "sectors" that begin life as distinct contributions to the amplitude coming from left-moving and right-moving string modes:

- The worldsheet Green function, $G(\tau, \sigma)$, becomes a genuine function of two variables, which can be taken to be $\tau + i\sigma$ and $\tau i\sigma$.
- **(2)** We use \dot{G} and \ddot{G} for the derivatives with respect to left-moving variables.
- **(9)** We use $ar{G}$ and $ar{G}$ for the derivatives with respect to right-moving variables.
- **()** We use H as the derivative with respect to one left-mover and one right-mover.
- **()** Finally, we decompose the (one-shell) polarisation tensor into these sectors by setting $\varepsilon_{\mu\nu} \rightarrow \varepsilon_{\mu}\bar{\varepsilon}_{\nu}$ and reconstruct it by identification $\varepsilon_{\mu}\bar{\varepsilon}_{\nu} \equiv \varepsilon_{\mu\nu}$ at the end.

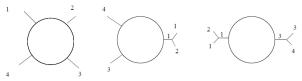
⁹Z. Bern, D.C. Dunbar, T. Shimada, Phys. Lett. B **312** (1993) 277 [arXiv:9307001 [hep-th]] ¹⁰D.C. Dunbar, P.S. Norridge, Nucl. Phys. B **433** (1995) 181 [arXiv:9408014 [hep-th]])

Closed strings Graviton rules Example

BDS Step 1

The $N\mbox{-}{\rm graviton}$ amplitudes are generated from some "primordial Feynman diagrams" according to

STEP 1: Draw all possible one-loop Φ^3 diagrams with N external legs with appropriate labels:



Notes:

- All **permutations** of external legs are to be included (and labelled as in ordinary Feynman diagrams) no need to worry about colour ordering as in gauge theory.
- Internal legs attached to "*external trees*" are assigned a label equal to the *smallest* label of the external legs it opens up to.
- So called "tapole" diagrams are ignored, along with loops on external legs

Closed strings Graviton rules Example

BDS Step 2

We need to calculate the contribution from each diagram after a reduction according to **STEP 2:** Each diagram is associated with an integral (dimensionally regularised so $D = 4 - 2\epsilon$)

$$\mathscr{D} = i \frac{(-\kappa)^N}{(4\pi)^{2-\epsilon}} \Gamma\left[\ell - 2 + \epsilon\right] \int_0^1 du_{\ell-1} \int_0^{u_{\ell-1}} dx_{\ell-2} \cdots \int_0^{u_2} du_1 \frac{\mathcal{K}_{\text{red}}}{\left[\sum_{i < j} K_i \cdot K_j G_{ij}\right]^{\ell-2+\frac{\epsilon}{2}}}$$

Notes:

- The ordering of the parameter integrals (over the u_i) coincides with the ordering of the l lines attached to the (massless) loop.
- K_i is the momentum entering the loop at point *i* (sum of external momenta entering trees that join to the loop there).
- K_{red} is the reduced kinematic factor (arising in the limiting string theory) to be constructed from the kinematic factor double copy –

$$\mathcal{K} = \int \prod_{i=1}^{N} du_{i} d\bar{u}_{i} \prod_{i$$

that is expanded to multi-linear order in each ε_i and each $\overline{\varepsilon}_i$.

James P. Edwards

Graviton scattering amplitudes in first quantisation

Closed strings Graviton rules Example

BDS Step 3

To determine the reduced kinematic factor we apply a set of rules to each diagram following

- STEP 3: Integration by parts
 - We integrate the kinematic expression by parts to remove all \ddot{G}_{ij} and \ddot{G}_{ij}
 - The functions G_{ij} and all second derivatives are taken to be symmetric in their indices whilst first derivatives are anti-symmetric.
 - Cross terms are handled according to the following relations:

$$\frac{\partial}{\partial u_k} \dot{\bar{G}}_{ij} = (\delta_{ki} - \delta_{kj}) H_{ij}, \qquad \frac{\partial}{\partial \bar{u}_k} \dot{\bar{G}}_{ij} = (\delta_{ki} - \delta_{kj}) H_{ij}$$
$$\frac{\partial}{\partial u_k} \ddot{\bar{G}}_{ij} = 0, \qquad \qquad \frac{\partial}{\partial \bar{u}_k} \ddot{\bar{G}}_{ij} = 0$$

• Once this has been achieved we can drop the leading exponential factor (with the G_{ij}) and parameter integrals which leaves behind \mathcal{K}_{red} .

Closed strings Graviton rules Example

BDS Step 4

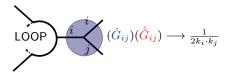
The reduced kinematic factor is now transformed according to two sets of **replacement rules**:

Step 4a: Tree Replacement rules:

• Working from the *outside* in, we **pinch** away trees attached to the loop by the replacement

$$(\dot{G}_{ij})(\dot{\bar{G}}_{ij}) \longrightarrow \frac{1}{2k_i \cdot k_j},$$

(setting all remaining powers to zero) and replacing $j \rightarrow i$ in other G_{jk} .



• Iterate until only the loop remains!

Closed strings Graviton rules Example

BDS Step 4

The reduced kinematic factor is now transformed according to two sets of **replacement rules**:

Step 4b: Loop Replacement rules:

- The loop replacement rules depend on the theory ¿what particle(s) circulate in the loop? They are independent implementations of the original gauge theory replacement rules in the left and right moving sector.
- For the simplest case, a scalar running in the loop, we make the replacements:

$$\begin{aligned} G_{ij} &\to G_{Bij} = |u_i - u_j| - (u_i - u_j)^2 = (u_i - u_j)(1 - (u_i - u_j)) \\ \dot{G}_{ij} &\to -\frac{1}{2} \dot{G}_{Bij} = -\frac{1}{2} (\sigma(u_i - u_j) - 2(u_i - u_j)) \\ \dot{G}_{ij} &\to -\frac{1}{2} \dot{G}_{Bij} = -\frac{1}{2} (\sigma(u_i - u_j) - 2(u_i - u_j)) \\ H_{ij} &\to \frac{1}{2T} \end{aligned}$$

• For a complex scalar, multiply the whole expression by 2.

At this stage we have reduced \mathcal{K}_{red} to a function of external momenta and parameters u_i , so we can compute the integral in \mathscr{D} for the diagram in question.

Graviton rules BDS rules Overview BDS The loop replacement rules can be generalised to include other particles in the loop. The rep Substitution Particle Content Ste 2[S,S]complex scalar -2[S, F]Weyl Fermion 2[S,V]Vector -4[V, F]gravitino and Weyl Fermion 4[V,V]graviton and complex scalar 4[V,V] - 2[S,S]graviton -4[V,F] + 2[S,F]gravitino Figure: A summary of the replacement rules – the notation [A, B] indicates the

substitution rules applied to \dot{G} and to \bar{G} respectively.

The notation F and V refers to two types of contribution:

$$F = S + C_F, \qquad V = S + C_V \tag{2}$$

where S is the scalar loop replacement and C_V and C_F are cycle replace-At **ment rules** that act on "closed cycles" like $\dot{G}_{ij}\dot{G}_{jk}\ldots\dot{G}_{si}$. u_i .

ters

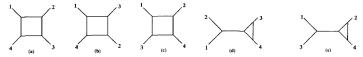
lin

Closed strings Graviton rules Example

Application to 4-graviton amplitudes

The BDS rules combine perfectly with the **spinor-helicity** method for external gravitons, where we decompose $\varepsilon_{\mu\nu}^{\pm\pm} \rightarrow \varepsilon_{\mu}^{\pm} \overline{\varepsilon}_{\nu}^{\pm}$.

- Good choices of the references spinors |q⟩ or |q] can significantly reduce the number of terms in the exponent of K by nullifying products like ε_i⁺ ⋅ ε_j⁺ or ε_i⁺ ⋅ k_j. For the amplitude 𝒴(1⁻, 2⁺, 3⁺, 4⁺) the standard formalism involves 12 different types of diagram that lead to 54 diagrams with vertices containing 𝒴(100) terms.
 - With the BDS formalism (and clever choice of reference vectors) this counting is reduced to just five Φ^3 diagrams that survive the *tree-replacement rules*!



• Their contributions are based on the kinematic factor (no second derivatives)

$$\begin{aligned} \mathcal{K}_{\rm red} &= \mathscr{S}(\dot{G}_{13} - \dot{G}_{12})(\dot{G}_{24} - \dot{G}_{23})(\dot{G}_{34} + \dot{G}_{23})(\dot{G}_{34} - \dot{G}_{24}) \\ &\times (\dot{\bar{G}}_{13} - \dot{\bar{G}}_{12})(\dot{\bar{G}}_{24} - \dot{\bar{G}}_{23})(\dot{\bar{G}}_{34} + \dot{\bar{G}}_{23})(\dot{\bar{G}}_{34} - \dot{\bar{G}}_{24}) \end{aligned}$$

where
$$\mathscr{S} = \left(\frac{s^2t}{4}\right)^2 \left(\frac{[24]^2}{[12]\langle 23\rangle\langle 34\rangle[41]}\right)^2$$

Closed strings Graviton rules Example

4-graviton contributions

We look at two examples:

Diagram (a) 4 (a) 4 (b) 3

There are no trees so we only need the loop replacement rules and we find

$$\mathcal{K}_{\rm red} = 2\mathscr{S}u_2^2(1-u_3)^2(u_3-u_2)^4$$

which is inserted into the \mathscr{D} for this diagram (ifinite in D = 4!):

$$\mathscr{D}_{a} = \frac{2i\kappa^{4}}{(4\pi)^{2}} \mathscr{S} \int_{0}^{1} du_{3} \int_{0}^{u_{3}} du_{2} \int_{0}^{u_{2}} du_{1} \frac{u_{2}^{2}(1-u_{3})^{2}(u_{3}-u_{2})^{4}}{\left[su_{1}(u_{3}-u_{2})+t(u_{2}-u_{2})(1-u_{1})\right]^{2}}$$

This integral evaluates easily to $\mathscr{D}_a = \frac{2i\kappa^4}{(4\pi)^2} \frac{\mathscr{S}}{840st}$. Likewise we evaluate diagrams (b) and (c) as

$$\mathscr{D}_b = \frac{2i\kappa^4}{(4\pi)^2} \frac{\mathscr{S}}{840ut} , \qquad \mathscr{D}_c = \frac{2i\kappa^4}{(4\pi)^2} \frac{\mathscr{S}}{252su}$$

Closed strings Graviton rules Example

4-graviton contributions

Diagram (d)

$$\begin{aligned} \mathcal{K}_{\rm red} &= \mathscr{S}(\dot{G}_{13} - \dot{\mathbf{G}}_{12})(\dot{G}_{24} - \dot{G}_{23})(\dot{G}_{34} + \dot{G}_{23})(\dot{G}_{34} - \dot{G}_{24}) \\ &\times (\dot{\bar{G}}_{13} - \dot{\mathbf{G}}_{12})(\dot{\bar{G}}_{24} - \dot{\bar{G}}_{23})(\dot{\bar{G}}_{34} + \dot{\bar{G}}_{23})(\dot{\bar{G}}_{34} - \dot{\bar{G}}_{24}) \\ &\to -\frac{\mathscr{S}}{s}(\dot{G}_{24} - \dot{G}_{23})(\dot{G}_{34} + \dot{G}_{23})(\dot{G}_{34} - \dot{G}_{24})(\dot{\bar{G}}_{24} - \dot{\bar{G}}_{23})(\dot{\bar{G}}_{34} + \dot{\bar{G}}_{23})(\dot{\bar{G}}_{34} - \dot{\bar{G}}_{24}) \end{aligned}$$

In the loop replacement rule turns this into a genuine function which yields

$$\mathscr{D}_{d} = -\frac{2i\kappa^{4}}{(4\pi)^{2}} \frac{\mathscr{S}}{s} \int_{0}^{1} du_{3} \int_{0}^{u_{3}} du_{2} \frac{u_{2}^{2}(1-u_{3})^{2}(u_{3}-u_{2})^{2}}{s(u_{3}-u_{2})}$$
(3)

which is again finite and easy to determine. In this way we get

$$\mathscr{D}_d = \frac{2i\kappa^4}{(4\pi)^2} \frac{\mathscr{S}}{360s^2} , \qquad \qquad \mathscr{D}_e = \frac{2i\kappa^4}{(4\pi)^2} \frac{\mathscr{S}}{360u^2}$$

Closed strings Graviton rules Example

4-graviton amplitude

The final result is the sum of these contributions and can be written neatly as

$$\mathscr{A}(1^{-},2^{+},3^{+},4^{+}) = \frac{i\kappa^{4}}{(4\pi)^{2}} \frac{s^{2}t^{2}}{2880u^{2}} (u^{2} - st) \left(\frac{[24]^{2}}{[12]\langle 23\rangle\langle 34\rangle[41]}\right)^{2}$$

which, as in the introduction is a simple, invariant function of the external momenta.

The calculations of the remaining helicity amplitudes are more or less comparable in difficulty and length.

The amplitudes can also be computed for more "exotic" theories and the results can be consistency checked against unitarity and other constraints. In general the method has been shown to provide a powerful, alternative calculational tool for studying graviton amplitudes in various field theories.

Closed strings Graviton rules Example

Worldline derivation

We would like to understand how to derive the gravitational Master Formula directly using worldline techniques and generalise it for *massive* particles running in the loop. This presents some difficulties and raises some questions:

Closed strings Graviton rules Example

Worldline derivation

We would like to understand how to derive the gravitational Master Formula directly using worldline techniques and generalise it for *massive* particles running in the loop. This presents some difficulties and raises some questions:

- For photons there is no significant difference between Worldline and Bern-Kosower, nor between working on-shell or off-shell
- For gravity, BDS requires on-shell gravitons used early on in the construction of string theory amplitudes and seems to survive the infinite tension limit. But this is not necessary for the worldline construction!
- We understand on-shell *irreducible* diagrams in the worldline formalism but producing the *reducible* ones still requires invoking the BDS procedure.
- In the worldline approach there is no intrinsic separation into left- and right-moving modes that is an essential part of the string theory method.

The starting point is the worldline representation of the amplitude:

$$\frac{1}{2} \left(\frac{-\kappa}{4}\right)^N \int_0^\infty \frac{dT}{T} (4\pi T)^{-\frac{D}{2}} \mathrm{e}^{-\mathbf{m}^2 \mathbf{T}} \left\langle V_g[k_1, \varepsilon_1] \dots V_g[k_N, \varepsilon_N] \right\rangle \tag{4}$$

with graviton vertex operator $V^g[k,\varepsilon] = \int_0^T d\tau \, \dot{x} \cdot \varepsilon \cdot \dot{x} \, \mathrm{e}^{ik \cdot x}$.

Conclusion

Alternative methods for calculating graviton scattering amplitudes are desirable (and probably necessary). **String inspired** techniques can be very useful.

For gauge theories (QED, QCD etc) we already understand the relationship between the string based "Bern-Kosower" method thanks to the **worldline formalism**. For gravity we are still working out the details of this correspondence.

- These methods involve Master Formulas for entire classes of diagrams
- Various theories (scalar / spinor / QCD) are unified by the first quantised methods which involve replacement rules to transform kinematic factors according to the particles running in the loop
- It remains to extend the approach to off-shell, massive amplitudes and to produce the reducible contributions within a single framework.

Conclusion

Alternative methods for calculating graviton scattering amplitudes are desirable (and probably necessary). **String inspired** techniques can be very useful.

For gauge theories (QED, QCD etc) we already understand the relationship between the string based "Bern-Kosower" method thanks to the **worldline formalism**. For gravity we are still working out the details of this correspondence.

- These methods involve Master Formulas for entire classes of diagrams
- Various theories (scalar / spinor / QCD) are unified by the first quantised methods which involve replacement rules to transform kinematic factors according to the particles running in the loop
- It remains to extend the approach to off-shell, massive amplitudes and to produce the reducible contributions within a single framework.

For more information on worldline techniques see

- Classic review: C. Schubert Phys. Rept. 355 (2001) 73 [arXiv:0101036 [hep-th]]
- More up-to-date report: JPE and C. Schubert [arXiv:1912.10004 [hep-th]]

and please get in touch if you're interested in joining the team!

Conclusion

Alternative methods for calculating graviton scattering amplitudes are desirable (and probably necessary). **String inspired** techniques can be very useful.

For gauge theories (QED, QCD etc) we already understand the relationship between the string based "Bern-Kosower" method thanks to the **worldline formalism**. For gravity we are still working out the details of this correspondence.

- These methods involve Master Formulas for entire classes of diagrams
- Various theories (scalar / spinor / QCD) are unified by the first quantised methods which involve replacement rules to transform kinematic factors according to the particles running in the loop
- It remains to extend the approach to off-shell, massive amplitudes and to produce the reducible contributions within a single framework.

For more information on worldline techniques see

- Classic review: C. Schubert Phys. Rept. 355 (2001) 73 [arXiv:0101036 [hep-th]]
- More up-to-date report: JPE and C. Schubert [arXiv:1912.10004 [hep-th]]

and please get in touch if you're interested in joining the team!

¡Thank you for your attention!