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Let me start with something completely different: plasma and the Debye-Hückel model 

heat up certain material → atoms ionize 
•gas of electrons with charge -q 
•background of positively charged ions with charge 
density +qρion 

•overall system is neutral 
→ average  charge density of electrons <ρ>electrons = 
ρion

a simple way to model the plasma:

Poisson equation for the electrostatic potential 
of an electron at  

 

ions static, but other electrons move → 

⃗r = 0 :

−∇2ϕ( ⃗r) =
−e
ϵ0

[δ(3)( ⃗r) + ρg( ⃗r) − ρ]
g( ⃗r)

a good first model: g( ⃗r) = e
−eϕ( ⃗r)

kBT ≃ 1 −
eϕ( ⃗r)
kBT

where we take the high temperature limit



Debye screening length
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essentially the 
same as charge 
in vacuumstrength of 

charge at origin 
strongly 
suppressed

• electrostatic potential is exponentially 
suppressed for large distances 

• charge placed at zero gets effectively 
reduced the further we get away



Let’s turn to a QCD plasma instead → color charges
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plasma of quarks and gluons

expect something very similar: 
- close by color charges should behave similar to the 

vacuum 
- far away charges should be screened   
- in other words: we have a characteristic correlation 

length

short correlation length in the plasma  
= high parton (quarks, gluons) density 

long correlation length in the vacuum 
= low parton densities   



Short correlation length: that’s interesting!
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increasing 
parton 
density

decreasing 
correlation 
length 

Heisenberg: 
 implies an energy scale which increases with density

 where  

: correlation length

Qs ∼
1
Rs

Rs

high density creates an energy scale for the 
system which increases if the density increases



Why is that interesting?
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36 9. Quantum Chromodynamics

world average, we first combine six pre-averages, excluding the lattice result, using a ‰
2 averaging

method. This gives
–s(M2

Z) = 0.1176 ± 0.0011 , (without lattice) . (9.24)

This result is fully compatible with the lattice pre-average Eq. (9.23) and has a comparable error.
In order to be conservative, we combine these two numbers using an unweighted average and take
as an uncertainty the average between these two uncertainties. This gives our final world average
value

–s(M2
Z) = 0.1179 ± 0.0010 . (9.25)

αs(MZ
2) = 0.1179 ± 0.0010

α s
(Q
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Q [GeV]

τ decay (N3LO)
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Figure 9.5: Summary of measurements of –s as a function of the energy scale Q. The respective
degree of QCD perturbation theory used in the extraction of –s is indicated in brackets (NLO:
next-to-leading order; NNLO: next-to-next-to-leading order; NNLO+res.: NNLO matched to a
resummed calculation; N3LO: next-to-NNLO).

This world average value is in very good agreement with the last version of this Review, which
was –s(M2

Z
) = 0.1181 ± 0.0011, with only a slightly lower central value and decreased overall

6th December, 2019 11:50am

QCD = strong interactions is characterized 
by asymptotic freedom

particle data group

- at large distance and low energy scales, 
the coupling is large → quarks and gluons 
strongly bound into hadrons; non-
perturbative physics (hard) 

- at short distance and high energy (= hard) 
scales: QCD becomes a weakly coupled 
theory 

- usually only realized for selected reactions 
(Deep Inelastic electron-proton scattering, 
high pT jet production, Higgs production, 
…)

here: an energy scale is generated dynamically & is 
increasing with density 
at high enough densities: we should cross the 
magical boundary of  GeVQs ∼ 1
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220 CMS Collaboration / Physics Letters B 724 (2013) 213–240

Fig. 7. The differential v2{2, |!η| > 2} (filled circles) and v2{4} (filled squares) values for four multiplicity ranges obtained with |η| < 2.4 and a pref
T range of 0.3–3 GeV/c. The

results are for 2.76 TeV PbPb collisions (top) and for 5.02 TeV pPb collisions (bottom). The error bars correspond to statistical uncertainties, while the shaded areas denote
the systematic uncertainties. Results after subtracting the low-multiplicity data (Noffline

trk < 20) as well as predictions from a hydrodynamic model are also shown (curves).
The open markers show the results from ALICE [40] and ATLAS [49] using 2012 pPb data.

Fig. 8. The differential v3{2, |!η| > 2} values for four multiplicity ranges under the same conditions as in Fig. 7.

over the entire pT range investigated here. The pT dependencies
of both the v2 and v3 coefficients are similar, with peak values at
2–3 GeV/c range for PbPb and slightly higher for pPb. The elliptic
and triangular flow components predicted by the hydrodynamic
calculation of Ref. [46] for pPb collisions at

√
sN N = 4.4 TeV and

for pT < 2.5 GeV/c are also shown, and compared to the high-
multiplicity pPb data in Figs. 7 and 8. The calculations have little
collision energy dependence, and assume the number of partici-
pating nucleons to be larger or equal to 18, approximately corre-
sponding to the top 4% central pPb events. However, contributions
from event-by-event fluctuations of the flow signal around its av-
erage value are not accounted for in the calculations. Therefore,

the v2 calculated in Ref. [46] is expected to lie between the val-
ues from the two- and four-particle correlation methods [59]. De-
tailed studies of v2 using various techniques in PbPb collisions at√

sN N = 2.76 TeV by CMS can be found in Ref. [9].
As mentioned above, the residual jet-like correlations on the

away side of the two-particle correlation function could contribute
to the extracted vn{2, |!η| > 2} signal, and thus induce a system-
atic uncertainty in the quantitative comparison to hydrodynamic
calculations. Assuming that the jet-induced correlations are invari-
ant with event multiplicity in pPb collisions, the ALICE [40] and
ATLAS [41] experiments proposed to subtract the results of low-
multiplicity events, where the long-range correlation signal is not

prospect: 
- theory description needs to deal with high parton densities (non-trivial, but sometimes possible) 
- but can rely on weak coupling methods (strong coupling is perturbative)

- see something related in data 
- pT seems to grow with 

number of produced particles  
(didn’t find the plot I wanted to show, but this 
one does the job) 

- can we describe heavy ion 
collisions, high multiplicity 
events using weak coupling 
methods? 

- = collision of 2 so-called Color 
Glass Condensates?

Answer: it’s hard to tell ….. why? these are incredible complicated systems; many different 
effects are of relevance
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exploring such effects in 
heavy ion collisions/high 
multiplicity events is bit like 
understanding wave 
phenomena with one of those 
…. 

we all know, that such a wave phenomena, are 
far more adequate to learn and understand 
waves …. 
once we master those, we can start addressing 
the breaking wave



Our isolated system: electron ion collisions
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e−
q

q̄

Here: 
- dihadron or dijet production in an electron ion 

collision  
- if ion is replaced by dilute system (proton): 

expect that 

∑
di−hadron

pi ≃ pγ + pprot.

๏ only a small transverse momentum 
imbalance between momenta of colliding 
proton and photon  

๏ transverse = transverse wrt. the collision 
axis

- dense system: expect transverse momentum imbalance 

of the order of the inverse correlation length  

- can measure that in electron ion collisions

Qs ∼
1
Rs



Gluon saturation
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- dihadron and dijet production is a key process to search for 
effects of gluon saturation at the future Electron Ion Collider  

- what is gluon saturation?

Geometric
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Color Glass Condensate effective theory: 
[McLerran, Venugopalan PRD 49 (1994) 3352]
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• observe power-like growth of gluon distribution towards 
low x = high center of mass energies 

• if continued forever, violates unitarity bounds 
• but: power-like growth drives us eventually into region of 

high parton densities 
• can show: high densities slow down/stop growth of low x 

gluon: saturation
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Can search for such effects through increasing the 
center of mass energy → for instance: exclusive 
charmonium production

J/Ψ,Υ

e, p, Pb

W 2

t
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p
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[MH, Padrón, 2011.02640]

https://arxiv.org/abs/2011.02640
https://arxiv.org/abs/2011.02640
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FIG. 1. [color online] π0-correlation curves calculated in the
saturation formalism at 10 GeV×100 GeV for e+ p (thick
line) and e+Au (thin line) with (dashed curve) and with-
out (solid curve) the Sudakov factor. The kinematics cho-
sen are y = 0.7, Q2 = 1GeV2, zh1 = zh2 = 0.3, ph1⊥ >
2GeV/c, 1GeV/c < ph2⊥ < ph1⊥.

the dihadron correlation is due to the combination of the
Sudakov suppression and saturation effects. It is conceiv-
able that the suppression due to saturation effects shall
become more and more dominant when the ion beam
species are changed from proton to gold, while the Su-
dakov effect remains more or less the same.

III. CONNECTIONS TO P+A DIHADRON
CORRELATIONS

Compared to existing p+A or d+Au dihadron cor-
relation data, there are several advantages to measur-
ing dihadron correlations in e+A collisions. One valu-
able feature is that one can make use of the scattered
electron to reconstruct kinematic information event by
event. Measuring the scattered electron allows us to
model-independently determine the required kinematic
variables x and Q2, which is essential for probing the
underlying gluon dynamics precisely. Another advantage
comes from the point-like structure of electrons. Since
electrons have no substructure and they couple to vir-
tual photons rather weakly, the probability to have mul-
tiple emission in e+A is very small compared to p+A.
This kind of multiple emission or interaction introduces
a significant amount of uncorrelated two-particle produc-
tion, which is known as the “pedestal” effect in RHIC
d+Au collisions. To understand the so-called pedestal
effect, one needs to take into account the double parton
scattering, which includes two independent and uncorre-
lated hard scatterings. In contrast, as explained above,
the pedestal contribution should be negligible and under
control in the e+A dihadron correlation measurement.
In addition, as is shown in Fig 2, the kinematic cov-

erage of the planned eRHIC realization of the EIC is

very similar to the measured RHIC d+Au data and ex-
tends to the desired small-x region. Therefore, it will
be a more precise and definite measurement compared
to what we already know from the RHIC d+Au data.
Here, the RHIC kinematics lines are calculated with the
assumption that the major fraction of the parton energy
is mainly taken by the hadrons, which is not always true.
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FIG. 2. [color online] The eRHIC kinematics coverage com-
pared to p+A at RHIC. The dash-dotted and dashed lines
show the eRHIC kinematics for the beam energies of 10 GeV
×100 GeV and 20 GeV ×100 GeV, respectively. The solid
lines represent the RHIC coverage at

√
s = 200 GeV for η = 0

and η = 4, where η = − ln tan(θ/2) is the pseudorapidity of
the particles.

The measurement of dihadron correlations in e+A col-
lisions is interesting by itself. It provides us with a golden
opportunity to directly measure the saturatedWW gluon
distribution. Through detailed calculations, Ref. [29]
summarizes the involvement of these two basic gluon dis-
tributions in different observables. It is interesting to
note that the dipole gluon distribution function is in-
volved in most known processes, especially inclusive DIS
measurements, which provides us with a lot of the essen-
tial information of the dipole scattering amplitude. On
the other hand, the WW gluon distribution contributes
to only a few of these processes, thus very little knowl-
edge about the WW distribution exists from the current
experimental data. In addition, unlike the dijet process
in p+A, which receives contribution from both the dipole
and WW gluon distribution, the WW gluon distribution
is the only UGD that contributes to e+A Dijet produc-
tion. Considering that the WW gluon distribution can
be physically interpreted as the number density of glu-
ons inside a nuclear wave function, while the dipole gluon
distribution does not have such interpretation, it is im-
portant and fundamental to acquire direct information
on the WW gluon distribution through dihadron corre-
lation measurements at an EIC.
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pfragT Transverse momentum with respect to jet direction from hadronization
Qs Saturation scale

The rest of this article is organized as follows: in
Sec. II, we discuss the theoretical framework used for
the prediction of saturation effects in the dihadron cor-
relation measurement. A brief comparison of dihadron
correlations in e+A versus p+A is provided in Sec. III. In
Sec. IV, we give an overview of the planned EIC project
and present simulation results for dihadron correlations
at an EIC. Finally, we summarize and conclude in Sec. V.

II. DIHADRON CORRELATIONS IN THE
SATURATION FORMALISM

According to the effective small-x kt factorization es-
tablished in Ref. [29], which is briefly summarized above,
the back-to-back correlation limit of the dihadron pro-
duction cross section can be used to directly probe the
WW gluon distribution xG(1)(x, q⊥). As a comparison,
the hadron production in semi-inclusive deep inelastic
scattering (SIDIS), as shown in Ref. [31], is related to
the so-called dipole gluon distributions xG(2)(x, q⊥).

The coincidence probability C(∆φ) = Npair(∆φ)
Ntrig

is a

commonly exploited observable in dihadron correlation

studies, in which Npair(∆φ) is the yield of the correlated
trigger and associate particle pairs, while Ntrig is the
trigger particle yield. This correlation function C(∆φ)
depends on the azimuthal angle difference ∆φ between
the trigger and associate particles. In terms of theoretical
calculation, the correlation function is defined as

C(∆φ) = 1
dσ

γ∗+A→h1+X
SIDIS

dzh1

dσ
γ∗+A→h1+h2+X
tot

dzh1dzh2d∆φ . (1)

Let us consider a process of a virtual photon scatter-
ing on a dense nuclear target producing two final state
back-to-back qq̄ jets: γ∗ + A → q(k1) + q̄(k2) + X , in
which k1 and k2 are the four momenta of the two outgoing
quarks. This process is the dominant one in the low-x re-
gion, since the gluon distribution is much larger than the
quark distributions inside a hadron at high energy. The
back-to-back correlation limit indicates that the trans-
verse momentum imbalance is much smaller than each
individual momentum: q⊥ = |k1⊥ + k2⊥| ≪ P⊥, with
P⊥ defined as (k1⊥ − k2⊥)/2. At leading order (LO), the
dihadron total cross section, which includes both the lon-
gitudinal and transverse contributions, can be written as
follows [29]:

dσγ∗+A→h1+h2+X
tot

dzh1dzh2d2ph1⊥d2ph2⊥
=C

∫ 1−zh2

zh1
dzq

zq(1−zq)
z2
h2z

2
h1

d2p1⊥d2p2⊥F(xg, q⊥)Htot(zq, k1⊥, k2⊥) (2)

×
∑

q e
2
qDq(

zh1

zq
, p1⊥)Dq̄(

zh2

1−zq
, p2⊥),

where C = S⊥Ncαem

2π2 gives the normalization factor, with
S⊥ being the transverse area of the target, zq is the longi-
tudinal momentum fraction of the produced quark with
respect to the incoming virtual photon, Htot is the com-
bined hard factor, k1⊥ and k2⊥ are the transverse mo-
menta of the two quarks, while ph1⊥ and ph2⊥ are the
transverse momenta of the two corresponding produced
hadrons respectively. F(xg, q⊥) comes from the relevant
WW gluon distribution xG(1)(xg, q⊥) evaluated with the
gauge links for a large nucleus at small x by using the
McLerran-Venugopalan model [12],

F(xg, q⊥) =
1

2π2

∫

d2r⊥e
−iq⊥r⊥

1

r2⊥
[1− exp(−

1

4
r2⊥Q

2
s)],

(3)

in which xg = zqp
2
h1⊥

z2
h1s

+ (1−zq)p
2
h2⊥

z2
h2s

+ Q2

s is the longi-

tudinal momentum fraction of the small-x gluon with
respect to the target hadron and Qs is the gluon satura-
tion scale. Dq(

zh
zq
, p⊥) represents the transverse momen-

tum dependent fragmentation functions, where p⊥ shows
the additional transverse momentum introduced by frag-

mentation processes. There can be more sophisticated
model description of the WW gluon distribution, which
involves a numerical solution to the BK type evolution
for the WW gluon distribution [34, 35]. But studying the
impact of these PDFs is beyond the scope of this work
presented here.

In principle, the so-called linearly polarised gluon dis-
tribution [32, 33] also contributes to the dihadron cor-
relation and can be systematically taken into account.
This part of the contribution comes from an averaged
quantum interference between a scattering amplitude and
a complex conjugate amplitude with active gluons lin-
early polarized in two orthogonal directions in the az-
imuthal plane. Numerical calculation shows that this
contribution is negligible for dihadron back-to-back cor-
relations. Also, this type of contribution vanishes when
the dihadron correlation function is averaged over the
azimuthal angle of the trigger particle.

As to the single-inclusive-hadron production cross sec-
tion, which enters the denominator of the definition of the
correlation function C(∆φ), it can be calculated from the
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1

4
r2⊥Q

2
s)],

(3)

in which xg = zqp
2
h1⊥

z2
h1s

+ (1−zq)p
2
h2⊥

z2
h2s

+ Q2

s is the longi-

tudinal momentum fraction of the small-x gluon with
respect to the target hadron and Qs is the gluon satura-
tion scale. Dq(

zh
zq
, p⊥) represents the transverse momen-

tum dependent fragmentation functions, where p⊥ shows
the additional transverse momentum introduced by frag-

mentation processes. There can be more sophisticated
model description of the WW gluon distribution, which
involves a numerical solution to the BK type evolution
for the WW gluon distribution [34, 35]. But studying the
impact of these PDFs is beyond the scope of this work
presented here.

In principle, the so-called linearly polarised gluon dis-
tribution [32, 33] also contributes to the dihadron cor-
relation and can be systematically taken into account.
This part of the contribution comes from an averaged
quantum interference between a scattering amplitude and
a complex conjugate amplitude with active gluons lin-
early polarized in two orthogonal directions in the az-
imuthal plane. Numerical calculation shows that this
contribution is negligible for dihadron back-to-back cor-
relations. Also, this type of contribution vanishes when
the dihadron correlation function is averaged over the
azimuthal angle of the trigger particle.

As to the single-inclusive-hadron production cross sec-
tion, which enters the denominator of the definition of the
correlation function C(∆φ), it can be calculated from the

[Zheng, Aschenauer, Lee, 
Xiao; 1403.2413]Today: di-hadron decorrelations

extension to 3 particle correlation within the Color Glass 
Condensate: [Ayala, MH, Jalilian-Marian, Tejeda-
Yeomans; 1604.08526, 1701.07143]

https://arxiv.org/abs/1604.08526
https://arxiv.org/abs/1701.07143
https://arxiv.org/abs/1604.08526
https://arxiv.org/abs/1701.07143
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FIG. 1. [color online] π0-correlation curves calculated in the
saturation formalism at 10 GeV×100 GeV for e+ p (thick
line) and e+Au (thin line) with (dashed curve) and with-
out (solid curve) the Sudakov factor. The kinematics cho-
sen are y = 0.7, Q2 = 1GeV2, zh1 = zh2 = 0.3, ph1⊥ >
2GeV/c, 1GeV/c < ph2⊥ < ph1⊥.

the dihadron correlation is due to the combination of the
Sudakov suppression and saturation effects. It is conceiv-
able that the suppression due to saturation effects shall
become more and more dominant when the ion beam
species are changed from proton to gold, while the Su-
dakov effect remains more or less the same.

III. CONNECTIONS TO P+A DIHADRON
CORRELATIONS

Compared to existing p+A or d+Au dihadron cor-
relation data, there are several advantages to measur-
ing dihadron correlations in e+A collisions. One valu-
able feature is that one can make use of the scattered
electron to reconstruct kinematic information event by
event. Measuring the scattered electron allows us to
model-independently determine the required kinematic
variables x and Q2, which is essential for probing the
underlying gluon dynamics precisely. Another advantage
comes from the point-like structure of electrons. Since
electrons have no substructure and they couple to vir-
tual photons rather weakly, the probability to have mul-
tiple emission in e+A is very small compared to p+A.
This kind of multiple emission or interaction introduces
a significant amount of uncorrelated two-particle produc-
tion, which is known as the “pedestal” effect in RHIC
d+Au collisions. To understand the so-called pedestal
effect, one needs to take into account the double parton
scattering, which includes two independent and uncorre-
lated hard scatterings. In contrast, as explained above,
the pedestal contribution should be negligible and under
control in the e+A dihadron correlation measurement.
In addition, as is shown in Fig 2, the kinematic cov-

erage of the planned eRHIC realization of the EIC is

very similar to the measured RHIC d+Au data and ex-
tends to the desired small-x region. Therefore, it will
be a more precise and definite measurement compared
to what we already know from the RHIC d+Au data.
Here, the RHIC kinematics lines are calculated with the
assumption that the major fraction of the parton energy
is mainly taken by the hadrons, which is not always true.

Bjx
-610 -510 -410 -310 -210 -110 1

]2
 [G

eV
2

Q

-110

1

10

210

310

410
10 GeV x 100 GeV
20 GeV x 100 GeV

y=0.95

y=0.95

y=0.01

y=0.01

=4η =0η

FIG. 2. [color online] The eRHIC kinematics coverage com-
pared to p+A at RHIC. The dash-dotted and dashed lines
show the eRHIC kinematics for the beam energies of 10 GeV
×100 GeV and 20 GeV ×100 GeV, respectively. The solid
lines represent the RHIC coverage at

√
s = 200 GeV for η = 0

and η = 4, where η = − ln tan(θ/2) is the pseudorapidity of
the particles.

The measurement of dihadron correlations in e+A col-
lisions is interesting by itself. It provides us with a golden
opportunity to directly measure the saturatedWW gluon
distribution. Through detailed calculations, Ref. [29]
summarizes the involvement of these two basic gluon dis-
tributions in different observables. It is interesting to
note that the dipole gluon distribution function is in-
volved in most known processes, especially inclusive DIS
measurements, which provides us with a lot of the essen-
tial information of the dipole scattering amplitude. On
the other hand, the WW gluon distribution contributes
to only a few of these processes, thus very little knowl-
edge about the WW distribution exists from the current
experimental data. In addition, unlike the dijet process
in p+A, which receives contribution from both the dipole
and WW gluon distribution, the WW gluon distribution
is the only UGD that contributes to e+A Dijet produc-
tion. Considering that the WW gluon distribution can
be physically interpreted as the number density of glu-
ons inside a nuclear wave function, while the dipole gluon
distribution does not have such interpretation, it is im-
portant and fundamental to acquire direct information
on the WW gluon distribution through dihadron corre-
lation measurements at an EIC.

- the study includes already a first estimate of 
effects related to the so-called Sudakov form 
factor 

- what is it?

4

saturation physics/CGC formalism [31] as follows:

dσγ∗+A→h1+X
SIDIS

dzh1d2ph1⊥
=C

∫ 1
zh1

dzq
∫

d2q⊥Fxg (q⊥)HSIDIS(k⊥, q⊥, Q) (4)

×
∑

q e
2
q

zq
z2
h1

Dq(
zh1

zq
, p⊥),

where HSIDIS is the q⊥ dependent hard factor for SIDIS,
which includes both the longitudinal and transverse pho-
ton contribution. Here Fxg (q⊥), which is related to

xG(2)(xg, q⊥), is the Fourier transform of the dipole cross
section:

Fxg(q⊥) =

∫

d2r

2π2
eiq⊥·r⊥

1

Nc
Tr⟨U(r⊥)U

†(0)⟩ρ (5)

≃
1

πQ2
sA

exp[−
q2⊥
Q2

sA

].

It has been suggested in Refs [34, 35] that both dipole
and WW gluon distributions have similar geometric scal-
ing behavior. Therefore, one can parameterize these
gluon distributions following the Golec-Biernat Wüsthoff
(GBW) [36] model calculation, in which Q2

sA(x) =
c(b)A1/3Q2

s0(x/x0)−λ, with Qs0 = 1 GeV, x0 = 3.04 ×
10−4 and λ = 0.288. The gluon saturation momen-

tum is related to Q2
sA(x) by Q2

s(x) = 2N2
c

N2
c−1Q

2
sA(x).

c(b) = c(0)
√

1− b2/R2 gives the nuclear profile depen-

dence with a radius R, where b is the impact parameter.
As it is not an easy task to determine the exact impact
parameter in e+A collisions, a median number c(b) = 0.8
is used for the estimation, which is supposed to average
the nucleus geometry effectively. The parametrized DSS

fragmentation function [37], D(z, p⊥) = D(z) 1
π⟨p2

⊥⟩
e

−p2⊥
⟨p2

⊥
⟩

with ⟨p2⊥⟩ = 0.2GeV2, is used to compute the hadron
production.
By utilizing Eq. (2) and Eq. (4), one can straightfor-

wardly calculate the coincidence probability. The theo-
retical prediction at the Born level for the suppression of
the away-side of the dihadron correlation measurement
is shown by the solid curves in Fig. 1.
All the above results are estimated based on the LO

Born level contribution. At the EIC energy scale the
one-loop contribution [39], which is also known as the
so-called Sudakov factor, can be important as well. To
include the Sudakov factor contribution at leading dou-
ble logarithm level, one can rewrite the relevant WW
distribution as follows [40]:

F(xg , q⊥) =
1

2π2

∫

d2r⊥e
−iq⊥r⊥

1

r2⊥
[1− exp(−

1

4
r2⊥Q

2
s)] exp[−

αsNc

4π
ln2 K2r2⊥

c20
], (6)

where K2 represents the hard momentum scale in two-
particle production processes. It can be chosen as K2 =
P 2
⊥ or K2 = Q2, depending on which one is larger, and

c0 = 2e−γE with the Euler constant γE . It is known
that the single logarithmic terms as well as the next-to-
leading order (NLO) contribution of the Sudakov factor
also have sizeable contributions compared to the above
leading double logarithmic contribution. Therefore, the
numerical value of αs in the Sudakov factor used in this
calculation may be different from what one normally ex-
pects according to a QCD running coupling constant cal-
culation.

One needs to pay attention to the applicability of this
calculation. As the GBW model is not sufficient to de-
scribe the UGDs in the region where q⊥ is much larger
than Qs, we should limit this calculation to the satura-
tion region (xg < 0.01) to ensure the GBW model can be
applied. Additionally, to ensure that the power correc-
tions to the two-particle production are negligible, one

needs the magnitude of the jet transverse momenta P⊥

to be much larger than Qs.

The current calculations are performed for Q2 of the
same order as P 2

⊥. For pair production, the Sudakov fac-
tor is usually due to a scale difference between P⊥ and
the dijet momentum imbalance q⊥. Because we have re-
quired that P⊥ ≫ q⊥ as discussed above, it is neces-
sary to include the Sudakov contribution. As for the
trigger hadron inclusive cross section, the Sudakov fac-
tor is not important, since the trigger hadron pT is of
the same order as Q and P⊥. An illustration of this
Sudakov effect with αs = 0.35 can be found in Fig. 1
labeled by the dashed lines. It is worthwhile to point
out that the Sudakov effect in a nuclear environment is
still not very well known. In the current small x scenario
as shown in Eq. (6), it is convoluted with the gluon dis-
tribution function. The theoretical calculation indicates
that the Sudakov factor has no nuclear A dependence
at LO. As shown in Fig. 1, the away-side suppression of

simple model for the transverse momentum dependent gluon distribution used 
in [Zheng, Aschenauer, Lee, Xiao; 1403.2413]

Sudakovhigh density

play a somehow similar role at first: crucial difference 
- saturation factor depends through  on density 
- Sudakov form factor sums up emissions of soft gluons→ does not directly depend on density

Qs
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αs << 1αs ∼ 1 ΛQCD

know how to 
do physics here?
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schematic picture of a TMD gluon 
distribution due to saturation/high density 
effects
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FIG. 4. Cross-section for di↵erent values of the non-perturbative parameters �f,h and the resummation done in momentum
space, with µ0 ⇠ qT . We have

p
s = 8 TeV and mH = 125 GeV. The bands come from varying independently both the

resummation scale µ0 and the rapidity scale ⇣0 by a factor of 2 around their default value, and taking the maximum variation.
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FIG. 5. Cross-section for di↵erent values of the non-perturbative parameters �f,h,Q and the resummation done in impact
parameter space, with µ0 ⇠ µb. We have

p
s = 8 TeV and mH = 125 GeV. The bands come from varying independently

both the resummation scale µ0 and the rapidity scale ⇣0 by a factor of 2 around their default value, and taking the maximum
variation.

at NNLL accuracy, increasing our control over the perturbative ingredients of the TMDPDFs. Moreover we have
derived, for the first time, the NLO Wilson coe�cient for the gluon helicity TMDPDF g

g

1L
, which will allow more

accurate phenomenological studies of this quantity in the future, e.g., at RHIC, AFTER@LHC or EIC. We have also
derived the OPE Wilson coe�cients for f

g

1 and h
?g

1 in the framework presented in this paper.
Using the obtained results we have performed a numerical study of the contribution of linearly polarized gluons

for the productions of ⌘b and Higgs boson in unpolarized hadron-hadron collisions. The major conclusion is that
the larger the relevant hard scale is, the less sensitive is the observable to their non-perturbative contribution, and
therefor harder to extract. Thus one would need to combine low- and high-energy experimental data and properly
implement the QCD evolution of gluon TMDPDFs in order to extract it. On the other hand, the fact that at large
scales the transverse momentum distributions are less sensitive to the non-perturbative parameters of the TMDPDFs
allows us to obtain accurate predictions even if currently there is no information on these parameters.

Finally we have provided some predictions for the Higgs boson transverse momentum distribution at the LHC,
both at

p
s = 8 TeV and

p
s = 13 TeV, using the formalism presented in this paper, i.e., expressing it in terms of

well-defined gluon TMDPDFs. We have studied the impact of non-perturbative contributions on the distribution and

TMD distribution of a Higgs boson due to 
Sudakov(=TMD) resummation; 
no saturation
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- description of high density setup usually based on high energy factorization = 
factorization of QCD correlators in the limit of high center of mass energies 

- care about relatively small (but perturbative pT), no high mass particles etc → in general 
a good approach, widely used 

- previous studies [Xiao, Yuan, Zhou, NPB 921 (2017)] etc.  recover renormalization group 
formulation through matching of Color Glass Condensate calculation scheme to collinear 
factorization (no saturation; conventional pQCD approach)
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Meanwhile, the QCD evolution effects also play important roles in describing the scale depen-
dence of these gluon distributions. This includes the small-x evolution, i.e., the BFKL/BK evo-
lution [15,16], and the so-called TMD evolution, i.e., the Collins–Soper evolution [17,3]. With 
the small-x approximations applied in Eq. (3), (5), the small-x evolution effects are taken into 
account with the associated evolution equations. However, from those equations, the Collins–
Soper evolution effects are not explicit. A recent quark target model calculation has shown that 
it is possible to treat the small x evolution and the TMD evolution in a unified and consistent 
way by directly computing the matrix element given in Eqs. (1), (4) in the small x limit [18]. The 
goal of this paper is to investigate the evolution effects for these TMDs, by taking into account 
both small-x and TMD evolution equations from the perspective of the TMD framework in terms 
of gauge links. Similar studies have been performed by Balitsky and Tarasov in Refs. [19] and 
Marzani in Ref. [20].

We follow closely the derivations in the previous publications [21,22], where it has been 
shown the above two resummations (Sudakov and small-x) can be performed consistently at 
the cross section level. To study the scale dependence of TMDs at small x, we go back to the 
full QCD definitions of the TMDs, in which the scale dependence naturally show up in the as-
sociated TMD factorization for hard scattering processes. In the gauge invariant definitions of 
the gluon distributions as shown in Eqs. (1), (4), there are un-canceled light-cone singularities 
from high order gluon radiations. The regularization introduces the scheme dependence for the 
TMDs and the associated factorizations.1 In our calculation presented in this paper, we follow 
the Collins 2011 scheme [26], where the soft factor subtraction in the TMDs is applied to reg-
ulate the light-cone singularity. Similar to the case of the hard scattering processes studied in 
Refs. [21,22], the most important high order gluon radiation come from two regions: (1) soft 
gluon and (2) collinear gluon. The soft gluon radiation leads to the Collins–Soper evolution, 
whereas the collinear gluon contributes to the DGLAP resummation formulated in terms of the 
integrated parton distributions in the CSS resummation formalism. In our case, these collinear 
gluon radiation contributions actually become the small-x evolution contributions, which are de-
scribed by the associated BK/JIMWLK equations [15,16,27,28]. The above two contributions 
are well separated in phase space. That is the reason that we can achieve resummations of large 
logarithms from these two sources consistently. The final results for the TMDs can be written 
as

xG(1)(x, k⊥, ζc = µF = Q) = − 2
αS

∫
d 2x⊥d 2y⊥

(2π)4 eik⊥·r⊥HWW(αs(Q))e−Ssud (Q2,r2
⊥)

×FWW
Y=ln 1/x(x⊥, y⊥) , (6)

where r⊥ = x⊥ − y⊥, ζc is the regulator for the end-point singularity in the TMD distributions 
in the Collins 2011 scheme, µF is the associated factorization scale. In the final factorization 
formula, these two scales are usually taken as the same as the hard momentum scale Q in hard 
scattering processes. Meanwhile, FWW

Y is the Fourier transform of the WW gluon distribution 
as in Eq. (3),

FWW
Y (x⊥, y⊥) =

〈
Tr

[
∂

β
⊥U(x⊥)U † (y⊥)∂

β
⊥U(y⊥)U † (x⊥)

]〉
Y (7)

1 After solving the evolution equations, the equivalence between different schemes can be proved order by order in 
perturbation theory [23–25].
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and Y represents the rapidity of the gluon from the nucleus Y ∼ ln(1/x). The Sudakov form 
factor contains all order resummation

Ssud =
Q2∫

c2
0/r2

⊥

dµ2

µ2

[
A ln

Q2

µ2 + B

]
, (8)

where c0 = 2e−γE with γE the Euler constant. The hard coefficients A and B can be calculated 

perturbatively: A =
∞∑
i=1

A(i)
(

αs
π

)i and B =
∞∑
i=1

B(i)
(

αs
π

)i . Similarly, we can write down the result 

for the dipole-gluon TMD,

xG(2)(x, k⊥, ζc = µF = Q) = − 2
αS

∫
d2x⊥d2y⊥

(2π)4 eik⊥·r⊥HDP (αs(Q))e−Ssud (Q2,r2
⊥)

×▽⃗2
r⊥FDP

Y=ln 1/x(x⊥, y⊥) , (9)

where FDP
Y (x⊥, y⊥) with r⊥ ≡ x⊥ − y⊥ is defined as,

FDP
Y (x⊥, y⊥) =

〈
Tr

[
U(x⊥)U † (y⊥)

]〉

Y
. (10)

In the above equations, both FWW
Y and FDP

Y are the renormalized quadrupole and dipole 
amplitudes, respectively, which obey the associated small-x evolution equations. The TMD evo-
lution effects are included in the Sudakov factor. The remaining factors, HWW(αs(Q)) and 
HDP (αs(Q)), which are of order 1, are the perturbative calculable finite hard parts.

We would like to emphasize that our approach is different from the previous works [18–22]. 
As mentioned above, the basic idea is the same as that in Refs. [21,22]. However, in this paper, 
we study the transverse momentum dependent parton distributions, which can be applied to var-
ious hard scattering processes. In Refs. [21,22], one particular hard process is studied. On the 
technique side, the TMDs contain the light-cone singularity, for which we will adopt Collins-11 
(JCC) scheme to regulate such singularity and perform the associated resummation by solving 
the evolution equations. We note that in Ref. [18], the Ji-Ma-Yuan scheme has been applied.

Our approach is also different from those in Refs. [19,20]. In particular, the authors of 
Ref. [19] tried to derive a universal evolution equation for both large-x and small-x. In our 
study below, we focus only the small-x region, and we derive both Collins–Soper evolution and 
small-x BK-type evolution. These two are separate evolution equations, which is different from 
that in Refs. [19]. The paper of Ref. [20] studies the combined TMD and small-x resummations 
in the collinear factorization framework. In our paper, we study the parton distribution in dense 
medium of large nucleus, where the non-linear effects in the small-x evolution plays an important 
role. The latter is absent in the analysis of Ref. [20].

The rest of this paper is organized as follows. In Sec. 2, we present a brief review on the 
TMD evolution, i.e., the Collins–Soper evolution, and the CSS resummation [29] in the collinear 
framework. Here, the integrated parton distributions will be important non-perturbative inputs 
for the TMDs. They obey the DGLAP evolution equations. In Sec. 3 , we compute the TMDs 
defined in Eqs. (1), (4) using the CGC approach and present our solutions for the TMDs with 
both Collins–Soper and small-x evolution effects. Finally, we conclude in Sec. 4.

the problem: 
-  in the collinear approach 
- but their CGC calculation yields  at 1-

loop

B ≠ 0
B = 0
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Soft-collinear factorization:  

- consider event with hard scale  (here: pT of jet or hadron) 
 

- take formal limit : factorization into hard coefficient 
(here: the transverse momentum imbalance  

) and TMD gluon distribution which 
carries the  dependence

M
pT ≃ |p1,T | ≃ |p2,T |

qT /M → 0
qT =

|qT | = |p1,T | − |p2,T |
qT

8

P

*γ

(a)

P

*γ

(b)

P

*γ

(c)

FIG. 5. Feynman diagrams for different PYTHIA subprocesses contributing to the hard interaction: (a) direct, (b) VMD, (c)
anomalous. The dotted lines indicate the presence of a spectator. Bubbles stand for a hadron or hadronic structure.

q

*γ

q

(a)

*γ

g

q

q

(b)

*γ

q

q

g

(c)

FIG. 6. Feynman diagrams for the hard processes based on point-like photons: (a) O(α0
s) LO DIS, (b) Photon-Gluon Fusion

(PGF) and (c) QCD Compton scattering (QCDC).

the nuclear medium. Second, an associated hadron at
the away-side, in addition to the primary hard scatter-
ing, is sensitive to the initial transverse momentum that
the incoming parton carries.

For pQCD calculations in the collinear factorization
framework, the PDFs and fragmentation functions do not
contain any transverse momentum dependence. There-
fore, the transverse momentum of hadrons produced in
the final state is given by pT = zp̂T , where p̂T and pT
are the transverse momentum of the parton and hadron
respectively. z represents the momentum fraction of a
hadron with respect to its mother parton. This relation
should be revised if the transverse momentum is allowed
in both the PDFs and fragmentation functions.

Transverse motion of partons inside hadrons can
be effectively included by assuming that the intrinsic
kT follows a Gaussian distribution. Similarly, the trans-
verse momentum enhancement pfragT with respect to the
jet direction during hadronization can also be approxi-
mated by a Gaussian distribution. The intrinsic kT and
fragmentation pfragT now both contribute to the transverse
momentum of final state hadrons, which can be written
as pT = z(kT + p̂T ) + pfragT . We follow the common prac-
tice to set the Gaussian width to 0.4 GeV for both in-
trinsic kT and pfragT distributions in the simulations.

Besides all the above effects, additional soft gluon ra-
diations, normally characterized as a parton shower can
also modify the final transverse momentum, thereby im-
pacting the dihadron correlations. In perturbative QCD

calculations the parton shower are computed in terms of
Sudakov form factors.
Fig. 7 shows an illustration of all the possible effects

available in the Monte Carlo in the simulation of the az-
imuthal correlation function. The open circles illustrate
the dihadron correlation with only intrinsic kT in the
initial parton distribution. It is understandable that the
correlation function is strongly peaked at ∆φ = 0,π for
this setting. Now the other effects are turned on one-by-
one according to the order of their occurrences in physical
processes. When the initial state (IS) parton shower is
added into the simulation, as shown by the open dia-
monds, the away-side correlation is significantly reduced
since it is very sensitive to the momentum imbalance of
the dijet system, while the near-side correlation is almost
unmodified. Next, we turn on the final state (FS) par-
ton shower for the scattered parton before the fragmen-
tation process occurs. We find that both the near-side
and away-side peaks are broadened, as illustrated by the
empty triangles, due to soft radiation and particle decay
in the fragmentation. Lastly, we add transverse momen-
tum dependence into the fragmentation function, labeled
as pfragT , and obtain the crossings, which indicate further
broadening of both peaks.
For our model of e+A implemented in PYTHIA, the

effects due to energy loss in the cold nuclear medium are
expected to be weak, because fast moving partons are
likely to fragment outside the nucleus in the considered
kinematic regions. Considering that the nuclear PDF
also has little impact on the pT imbalance of dijets, it

matrix element for hard 
coefficient
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opments focus on the particular kinematics where common interests have attracted the attentions 
from both the hadron physics and heavy ion physics communities, i.e., the TMDs at small-x. 
From the theoretical point of view, it has been shown that the TMDs at small-x are unified with 
the un-integrated gluon distributions (UGDs), which are widely applied in heavy ion physics, in 
particular, as an important ingredient to describe the initial conditions for heavy ion collisions at 
high energies. In the last few years, there have been tremendous progresses in connecting TMDs 
and small-x saturation physics.

There are two different unintegrated gluon distributions [1–7]. The first gluon distribution, 
which is known as the Weizsäcker–Williams (WW) gluon distribution, is calculated from the 
correlator of two classical gluon fields of relativistic hadrons [1,2]. The WW gluon distribution 
can be defined following the conventional gluon distribution [3,4]

xG(1)(x, k⊥) =
∫

d ξ−d 2ξ⊥
(2π)3P + eixP+ξ−−ik⊥·ξ⊥⟨P |F+i (ξ−, ξ⊥)L†

ξL0F
+i (0)|P ⟩ , (1)

where Fµν is the gauge field strength tensor Fµν
a and Lξ = P exp{−ig

∫ ∞
ξ− d ζ−A+(ζ, ξ⊥)} is 

the gauge link in the adjoint representation. This gluon distribution can also be defined in the 
fundamental representation [6],

xG(1)(x, k⊥)

= 2
∫

d ξ−d ξ⊥
(2π)3P + eixP+ξ−−ik⊥·ξ⊥⟨P |Tr

[
F+i (ξ−, ξ⊥)U [+]† F+i (0)U [+]

]
|P ⟩, (2)

where the gauge link U [+]
ξ = Un [0,+∞;0]Un

[
+∞, ξ−; ξ⊥

]
with Un being reduced to the 

light-like Wilson line in covariant gauge. Within the small-x color glass condensate (CGC) 
framework, this distribution can be written in terms of the correlator of four Wilson lines as [7,8],

xG(1)(x, k⊥)

= − 2
αS

∫
d 2x⊥
(2π)2

d 2y⊥
(2π)2 e−ik⊥·(x⊥−y⊥)

〈
Tr [∂iU(x⊥)]U † (y⊥)

[
∂iU(y⊥)

]
U † (x⊥)

〉

x
, (3)

where the Wilson line U(x⊥) is defined as Un [−∞,+∞;x⊥]. The second gluon distribution, 
the Fourier transform of the dipole cross section, is defined in the fundamental representation

xG(2)(x, k⊥) = 2
∫

d ξ−d ξ⊥
(2π)3P + eixP+ξ−−ik⊥·ξ⊥⟨P |Tr

[
F+i (ξ−, ξ⊥)U [−]† F+i (0)U [+]

]
|P ⟩,

(4)

where the gauge link U [−]
ξ = Un [0,−∞;0]Un

[
−∞, ξ−; ξ⊥

]
stands for initial state interactions. 

Due to the gauge link in this gluon distribution being from −∞ to +∞, naturally this gluon 
distribution can be related to the color-dipole cross section evaluated from a dipole of size r⊥
scattering on the nucleus target [7,8],

xG(2)(x, k⊥) = q2
⊥Nc

2π2αs
S⊥

∫
d 2r⊥
(2π)2 e−ik⊥·r⊥ 1

Nc

〈
TrU(0)U † (r⊥)

〉

x
. (5)

Similar analysis can also be extended to the polarization dependent cases [9–14]. Such identifi-
cations have laid solid foundation for the exploration of the nucleon/nuclei tomography in terms 
of parton distributions, which can be measured through various high energy hard scattering pro-
cesses.

- possible operator definition of a TMD gluon distribution 
- UV divergent→ requires renormalization 
- physical reason: we took M → ∞

big advantage: we can study this 
QCD operator using the 
renormalization group 
= determine its anomalous 
dimension they are universal = independent of 

infrared physics



an action formalism for reggeized gluons: 
Lipatov’s high energy effective action

[Lipatov; hep-ph/9502308]

...

...

basic idea:

correlator with regions 
localized in rapidity, 
significantly separated from 
each other 

factorize using auxiliary 
degree of freedom = 
the reggeized gluon

• action for reggeized quarks: 
[Lipatov,Vyazovsky hep-ph/0009340] 

• action for electroweak bosons:
[Gomez Bock, MH, Sabio Vera, 
2010.03621]

relevant kinematics: 
Multi-Regge-Kinematics 
(separated in rapidity & 
transverse momenta of same 
order of magnitude)

what did we do? a different formalism for high energy 
factorized amplitudes

https://arxiv.org/abs/hep-ph/0009340
https://arxiv.org/abs/2010.03621
https://arxiv.org/abs/hep-ph/0009340
https://arxiv.org/abs/2010.03621


• idea: factorize QCD amplitudes in the high energy 
limit through introducing a new kind of field: the 
reggeized gluon A± (conventional QCD gluon:     )

• reggeized gluon globally charged 
under SU(NC)

2 The High-Energy E↵ective Action

Within the framework provided by Lipatov’s e↵ective action [11, 12], QCD amplitudes are
in the high energy limit decomposed into gauge invariant sub-amplitudes which are localized
in rapidity space. The e↵ective Lagrangian then describes the coupling of quarks ( ) and
gluon (vµ) fields to a new degree of freedom, the reggeized gluon field A±(x). The latter
is introduced as a convenient tool to reconstruct the complete QCD amplitudes in the high
energy limit out of the sub-amplitudes restricted to small rapidity intervals. Lipatov’s e↵ective
action is obtained by adding an induced term Sind. to the QCD action SQCD,

Se↵ = SQCD + Sind., (1)

where the induced term Sind. describes the coupling of the gluonic field vµ = �it
a
v
a
µ(x) to the

reggeized gluon field A±(x) = �it
a
A

a
±(x), with t

a a SU(Nc) generator in the fundamental
representation, tr(tatb) = �

ab
/2. For the definition of light-cone directions we follow the

conventions established in the original publication [11],

k
± = n

±
· k = n⌥ · k = k⌥, (2)

with n
±

· n
⌥ = 2 and (n±)2 = 0. This implies the following Sudakov decomposition of a four

momentum

k =
k
+

2
n
� +

k
�

2
n
+ + k =

k�
2

n+ +
k+

2
n� + k. (3)

Note that transverse momenta and coordinates will be denoted by bold letters. Furthermore

@±x
± = 2, @⌥x

± = 0 . (4)

High energy factorized amplitudes reveal strong ordering in plus and minus components of
momenta which leads to the following kinematic constraint obeyed by the reggeized gluon
field:

@+A�(x) = 0 = @�A+(x). (5)

Even though the reggeized gluon field is charged under the QCD gauge group SU(Nc), it is
defined to be invariant under local gauge transformation �LA± = 0. With the local gauge
transformations of gluon and quark fields given by

�Lvµ =
1

g
[Dµ,�L], �L = ��L . Dµ = @µ + gvµ, (6)

where Dµ denotes the covariant derivative and �L the parameter of the local gauge trans-
formations which decreases for x ! 1, the reggeized gluons fields are invariant under local
gauge transformations,

�LA± =
1

g
[A±,�L] = 0 . (7)
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• but invariant under local gauge transformation

→ gauge invariant factorization of QCD correlators

vs.

kinematics (strong ordering in light-cone 
momenta between different sectors):
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calculation is more cumbersome → work in dilute approximation (but within high 
energy factorization) 😩 
- not what we finally want 
- but the first step to get eventually the right result also for the high density case

where A
(n)

⇠ ↵
n
s , we have finally at leading order

J̄
ij,(0) =

qiqj

q2
�
(2+2✏)(q � k)�

✓
1�

k
�

q�

◆
, Ĵ

ij,(0) =
qiqj

q2
�
(2+2✏)(q � k), (56)

and therefore

C
f,(0)

gg⇤ (q,k) = C
h,(0)

gg⇤ (q,k) = �
(2)(q � k), (57)

and the TMD gluon distributions are up to an overall factor4 of 1/⇡ at leading order identical
to the unintegrated gluon density [13]

f
(0) = h

(0) =
1

⇡
G

⇣
�⌘ab, ⌘b, q, f̄

(1)

⌘
, �(0)ij =

qiqj

q2⇡
G

⇣
�⌘ab, ⌘b, q, f̄

(1)

⌘
(58)

where the kT -factorization scheme defined in Sec. 3.3 yields expression which are closest to
conventional collinear factorization results. Note that the unintegrated gluon density is there-
fore directly related to the operator definition of the gluon TMD. Moreover, in the dilute limit
i.e. considering only 2 reggeized gluon exchange, the unintegrated gluon density is universal5.
We further stress that the distribution of linearly polarized gluons in an unpolarized hadron
is non-zero within high energy factorization already at tree level, in contrast to the result
found within collinear factorization [53]. From a technical point of view this is of course easily
understood, since the initial gluon carries within high energy factorization already finite k
and therefore gives rise to such a distribution.

4.1 One-loop calculation without soft-factor

µ µ µ µ µ

µ µ µ µ

Figure 5: Virtual corrections

4The overall factor arises since – at least at the level of bare distributions – the unintegrated gluon density
reduces to the collinear gluon in the double logarithmic limit after integration over

R
dk2 while the gluon

TMD requires an integral over
R
d2k, which gives rise to a relative factor of ⇡.

5Note that this universality breaks down, once corrections due to multiple reggeized gluon exchange are
included see e.g. [20]
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key observation: 
- the set of virtual corrections 

(which carry the UV 
divergence) is greatly 
enhanced within Lipatov’s 
effective action 

- CGC approach: essentially 
only the last diagram 
(modulo details)

add real corrections + soft factor 
→ obtain complete 1-loop coefficient and

induced contributions, see also the discussion in [72] in the context of soft-collinear e↵ective
theory for high energy scattering.

As a last step we need to combine virtual (Eq. (59) with appropriate projection) and
real (Eqs. (66)(67)) corrections, with the soft factor (with appropriate projections). Note
that the contribution of the soft-factor merely amounts to a replacement of the regulator
� by the factorization parameter yc. We obtain for the 1-loop high energy subtracted and
renormalized 1-loop coe�cients C̃(1)f,h the following result:

C̃
(1)f (q�, q;k) =

↵sCA

2⇡

(
�
(2)(l)
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2

3
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+

+
1
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0
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(1)(q,k) +O(✏), (76)
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where

�0 =
11CA

3
�

2nf

3
. (78)

While the above expression no longer carries rapidity divergences, it still comes with several
poles in 1/✏, which are of ultraviolet origin and which require renormalization. The corre-
sponding renormalization constant is identical for both unpolarized and linearly polarized
gluons and is obtained as

ZG = 1�
↵sCA

2⇡


1

✏2
+

1

✏

✓
ln

(q�)2e2yc

µ2
�

�0
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◆�
, (79)

which gives rise to the following anomalous dimension

�G =
d lnZG

d lnµ
=

↵s

2⇡


�0 + 2CA ln

µ
2

(q�)2e2yc

�
, (80)
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complete 1-loop anomalous 
dimension (including the “B" 
term) [MH, 2107.06203]

https://arxiv.org/abs/2107.06203
https://arxiv.org/abs/2107.06203


Many more interesting details
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- obtain matching coefficients of TMD gluon distribution to high energy factorization 
unintegrated gluon distribution 

- unpolarized and linearly polarized TMD gluon distribution differ also due to 1-loop 
correction, not only due to high density effects (as found at Born level) 

- clarification of the relation between Collins-Sopers-Sternman rapidity evolution of soft 
gluons and Balitsky-Fadin-Kuraev-Lipatov rapidity evolution from high energy 
factorization etc. 

- next step: do all this for high densities (on it, but it’s technically tricky ….)

Summing up: -Why is it interesting?  
- relates to core questions of phenomenology of a future collider project which will be realized for 

sure in our lifetime (if you’re not too old and your health is good)  
- it’s Quantum Field Theory at work; combines various non-trivial features 
- not covered: TMD distributions are a very rich field by themselves (apart from their relation to 

gluon saturation) and needed to increase our understanding of the motion of quarks and 
gluons in a hadron and how spin and other quantities arise due to multi-particle dynamics 
(maybe Aurore will tell you about that; I hope …)

want know more about it? work on it? get in contact: martin.hentschinski@udlap.mx

mailto:martin.hentschinski@udlap.mx
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