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ABSTRACT
We present a study of the two flavor Schwinger model by means of lattice simulations, using Wilson fermions and the Hybrid Monte Carlo algorithm. At
finite temperature, we measure the mass of the bosons, which are related to mπ and mη′ as a function of the degenerate fermion mass m. We compare

the results with the numerical solution of a set of equations obtained by Hosotani et al. based on bosonization, which predict these masses when
m�

√
2g2/π, where g is the gauge coupling. Furthermore, we measured the pion decay constant Fπ, in the so-called δ-regime, where finite size effects

of the pion mass lead to Fπ = 0.6688(5). We also computed Fπ through an independent method, which consists of measuring the quenched topological
susceptibility and applying a 2d version of the Witten-Veneziano formula. This yields a lower value of Fπ = 0.424(8). The discrepancy might be due to

subtleties in the application of the Witten-Veneziano formula to the Schwinger model.

QCD
Quantum Chromodynamics is the theory for the strong interaction, its Lagrangian is
given by

L =

Nf∑
f

ψf (γµDµ −mf )ψf −
1

4
Tr[GµνGµν ], Gµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ].

At low energy regime a non-perturbative approach is required, such as lattice simu-
lations or an effective field theory. For low energy we consider those quarks whose
masses satisfy mf � ΛQCD ≈ 300 MeV. Hence, we work with two flavors u and d,
since mu,md . 5 MeV .

CHIRAL SYMMETRY
To build the effective field theory, we have to analyze the chiral symmetry by applying
the chiral projection operators.
PR = 1

2 (I + γ5), PL = 1
2 (I− γ5), ψfL,R = PL,Rψf , ψfL,R = ψfPR,L.

L =

Nf∑
f

[ψf,LγµDµψf,L + ψf,RγµDµψf,R −mf (ψf,Rψf,L + ψf,Lψf,R)]− 1

4
Tr[GµνGµν ].

Writing

ψR,L =

(
ψuR,L
ψdR,L

)
, ψR,L =

(
ψuR,L , ψdR,L

)
,

we can transform

ψR → ψ′R = RψR, ψR → ψ ′R = ψRR
†, R ∈ SU(Nf )R,

ψL → ψ′L = LψL, ψL → ψ ′L = ψLL
†, L ∈ SU(Nf )L

and L remains invariant when mf = 0, for that reason this is known as the chiral limit.
However the chiral condensate

Σ = −〈ψψ〉 → −〈ψ ′ψ′〉 = −〈ψRR†LψL + ψLL
†RψR〉.

only remains invariant when R = L. Therefore, if 〈ψψ〉 = 0, the symmetry is sponta-
neously broken: SU(Nf )L ⊗ SU(Nf )R → SU(Nf )L=R. The Goldstone theorem implies
that N2

f − 1 massless NGB appear. If mf & 0, there is explicit symmetry breaking and for
Nf = 2 three quasi-NGB appear: π+, π−, π0. We will consider mu ≈ md ≡ m.

CHIRAL PERTURBATION THEORY (χPT )
Chiral perturbation theory is the most successful effective field theory for QCD. To build
the theory for Nf = 2 and m = 0 we introduce a field

U(x) = exp
(
i
φ(x)

Fπ

)
, φ(x) =

(
π0(x)

√
2π+(x)√

2π−(x) −π0(x)

)
and we write an effective Lagrangian Leff(U) with global SU(2)L⊗SU(2)R symmetry. All
the symmetric terms must be included in L eff(U). Nevertheless, this leads to an infinite
number of terms, so one truncates in the number of derivatives

Leff =
1

4
F 2
πTr[∂µU†∂µU ]− 1

4
l1(Tr[∂µU†∂µU ])2 + · · ·

By considering m 6= 0 and adding the term 1
2ΣmTr

[
U + U†

]
, there is explicit symmetry

breaking SU(2)L ⊗ SU(2)R → SU(2)L=R. For m� ΛQCD and infinite volume we have

Leff =
F 2
π

4
Tr[∂µU†∂µU ] +

1

2
ΣmTr

[
U + U†

]
, Σ =

F 2
πm

2
π

m
.

The effective Lagrangian can be formulated in terms of a normalized field ~S(x) ∈ O(4),
|~S(x)| = 1 as well, since there is a local isomorphism between O(4) and SU(2)L⊗ SU(2)R.
The symmetry breaking pattern takes the form

O(4)→ O(3) ⇐⇒ SU(2)L ⊗ SU(2)R → SU(2).

In terms of the field ~S(x), the Leff with the least number of derivatives reads

Leff =
F 2
π

2
∂µ~S · ∂µ~S.

Now, we introduce an external field ~H that explicitly breaks the symmetry by adding the
term

Ls.b. = −Σ ~H · ~S,

where ~H plays the same role as the quark mass. This is known as the non-linear σ model.

REGIMES OF CHIRAL PERTURBATION THEORY
For finite volume V , there are three regimes to study χPT , based on the dimensions of V

• p-regime: V = L4, L� 1
mπ

.

• ε-regime: V = L4, L . 1
mπ

.

• δ-regime: V = L3 × Lt, L . 1
mπ
� Lt [1].

In the δ-regime, when we take the chiral limit m → 0 there is a residual pion mass mR
π .

Also, the finite space volume enables us to treat the theory in this regime as a quasi-1D
field theory. Based on this, the system can be modeled as an O(4) quantum rotor [2]. The
energies are given by

Ej − E0 =
j(j + 2)

2Θeff
, Θeff = F 2

πL
d−1

[
1 +

N − 2

4πF 2
πL

d−2

(
2
d− 1

d− 2

)
+ · · ·

]
for d ≥ 3. mR

π is obtained with the energy gap

mR
π = E1 − E0 =

3

2Θeff
=

3

2F 2
πL

3(1 +4)
, 4 =

0.477...

F 2
πL

2
+ ... d = 4.

For two dimensions we can only consider the leading order term of Θeff, yielding

mR
π '

3

2F 2
πL

.

By performing lattice simulations in 2D, one obtainsmR
π for different values of L and one

can verify the prediction in the δ-regime. We did that by using the Schwinger model.

MASSIVE SCHWINGER MODEL
The Schwinger model 2D QED [3]. It is a toy model for QCD, since it is simpler and
has common properties, such as confinement, chiral symmetry breaking and topology
[4, 5]. If one performs a Wick rotation τ = it, the Lagrangian takes the following form in
Euclidean space

L =

Nf∑
f=1

ψ̄f
[
γEµ (i∂µ + gAµ) +mf

]
ψf +

1

4
FµνFµν .

We consider degenerate masses m ≡ mf . Schwinger proved that when m = 0 and
Nf = 1, a boson of mass µ2 = g2/π appears. This result has been generalized for Nf > 1,
where µ2 = Nfg

2/π [6]. For 2 massive flavors, it is known that two bosons appear
and their masses can be related to mπ and mη′ from QCD. No general solution for the
dependence of these masses onm exists, but there have been several analytic approaches.
In particular, we analysed the approach made by Hosotani et al. [7, 8]. He maps the
Schwinger model onto a circle by imposing the boundary conditions

ψf

(
τ +

1

T
, x

)
= −e−i2παfψf (τ, x), Aµ

(
τ +

1

T
, x

)
= Aµ(τ, x)

where T is temperature of the system, related to the Euclidean time extent by T = 1/Lt.
Later he uses bosonization, which allows him to reduce the model to a quantum mechan-
ical system, governed by the following set of equations, valid when m� µ.[(

i
d

dϕ
− δα

)2

− κ cosϕ

]
f(ϕ) = εf(ϕ), f(ϕ+ 2π) = f(ϕ), δα = α2 − α1,

κ =
4

π
mLt [B(mη′Lt)B(mπLt)]

1/2
e−π/(2µLt), µ2 = 2g2/π,

B(z) =
z

4π
exp

[
γ +

π

z
− 2

∫ ∞
1

du

(euz − 1)
√
u2 − 1

]
, γ = 0.5772...

m2
π =

2π2

L2
t

κ

∫ π

−π
dϕ cosϕ|f0(ϕ)|2, m2

η′ = µ2 +m2
π.

One can compute values for mπ and mη′ by solving this set of equations in a self-
consistent way. Hosotani’s solution for mπ converges to

mπ = 2.1633...(m2g)1/3

when one approximates mη′ ≈ µ and takes Lt → ∞. There is another prediction for
small mass and large volume given by Smilga [9], which states

mπ = 2.008...(m2g)1/3.



FINITE TEMPERATURE RESULTS
We computedmπ andmη′ at finite temperature by using a Hybrid Monte Carlo algorithm
and we compared them with Hosotani’s solution. Taking 103 measurements we obtained
the following for Lt = 10 and β = 1/g2 = 4.

Figure 1

Only for m � µ Hosotani’s solution agrees with the lattice results. We confirm that mπ

vanishes for m = 0 and that mη′ converges to µ =
√

2/(πβ) ' 0.39.

δ-REGIME RESULTS
In the δ-regime we obtained the pion mass for different values of the degenerate fermion
mass m and for different spatial size L by taking 103 measurements. To extrapolate mR

π ,
we fitted a function of the form mπ =

√
a+ bm2g. In figure 2 we show mπ as function of

(m2g)1/3 for L = 10 and β = 4.

Figure 2: Pion mass in the δ-regime for L = 10 and β = 4. Close to the chiral limit the pion mass
result is plagued by large errors, so one has to extrapolate mR

π . This yields mR
π = 0.3323(22).

We measured mR
π for several values of L. In figure 3 we show the residual pion mass as a

function ofL; we observe a 1/L behavior, as predicted in the δ-regime. We also computed
Fπ .

Figure 3: Residual pion mass as a function of the spatial size L for β = 4.

We repeated everything for β = 2 and 3 to verify that Fπ is β independent. In figure 4 we
show the result.

Figure 4: Residual pion mass as a function of the spatial size L for β = 2 and 3.

In table 1 we show the three results for Fπ in two dimensions. An average of the values
yields

Fπ = 0.6688(5).

β 2 3 4

Fπ 0.6683(50) 0.6681(25) 0.6700(22)

Table 1: Pion decay constant for different β.

WITTEN-VENEZIANO FORMULA
The Witten-Veneziano formula relates the topological susceptibility χT with the masses
of the η, η′ and π mesons in QCD [10, 11]. It is obtained from the leading order term of a
1/Nc expansion, for large Nc (color number). For three flavors, the formula reads

m2
η′ −

1

2
m2
η −

1

2
m2
π =

6

F 2
η′
χ

que
T ,

where “que” stands for quenched, i.e. its value when the fermion mass m → ∞. For
large Nc, Fη′ = Fπ is valid in QCD. In the Schwinger model for massless fermions, the
formula takes the following form, for Nf ≥ 2 [12]

m2
η′ =

2Nf
F 2
η′
χ

que
T , m2

η′ =
Nfg

2

π
.

However, in this case the literature is not clear whether Fη′ = Fπ is valid. The topological
susceptibility in the Schwinger model is defined as

χT =

∫
d2x 〈q(x)q(0)〉, q(x) =

g

2π
εµνFµν(x),

where q(x) is the topological charge density. We computed χT as a function of m by
taking 104 measurements. In figure 5 we show χTβ vs. m.

Figure 5: χT as a function of the fermion mass. To extrapolate to the quenched value we fitted two
different functions and took the average as the final result. On the left-hand side plot we fitted a
function of the form y = a+bx+cx2

d+fx+gx2
, while on the right-hand side we fitted y = ae−be

−cx
.

We obtained χque
T = 0.029(1)g2. With the Witten-Veneziano formula we calculate

Fπ =

√
χ

que
T 2π

g2
= 0.4243(76).

CONCLUSIONS
We performed an analysis of the Schwinger model at finite temperature, where we com-
puted mπ and mη′ for different values of the degenerate fermion mass by means of lat-
tice simulations. We compared the results with a numerical solution to the equations
proposed by Hosotani in his bosonization approach.

We verified the 1/L behavior predicted in the δ-regime for mR
π in 2D, which al-

lowed us to determine the pion decay constant Fπ . In the δ-regime our final result
is Fπ = 0.6688(5) and we checked that it is independent of the gauge coupling con-
stant. Nevertheless, this result disagrees with the value computed by using the Witten-
Veneziano formula: Fπ = 0.4243(76). This might be due to a wrong interpretation of Fπ
in the Witten-Venziano formula. Further investigation is needed in this direction.
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