Detector Control System for Forward Diffractive Detector

Juan Manuel Mejia Camacho^{1,2} Juan Carlos Cabanillas Noris² ¹Autonomous University of Sinaloa, Culiacan, Mexico, ²National Technological of Mexico, Culiacan, Mexico

FDD-A

11111111

XXXV Annual Meeting of the Division of Particle and Fields of the Mexican Society of Physics

FDD location in ALICE

The Forward Diffractive Detector (FDD) will be located at ends A and C of the ALICE cavern for operation during Run-3 of the Large Hadron Collider (LHC).

Fast Interaction Trigger

The Fast Interaction Trigger (FIT) serves as an interaction trigger, online luminometer, initial indicator of the vertex position, and the forward multiplicity counter [1].
The FDD detector is part of one of the three subdetectors that make up ALICE's Fast Interaction Trigger (FIT) project, together with FTO and FVO detectors.

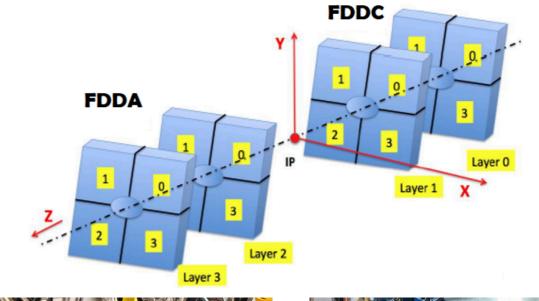
- FDD will contribute with the measurements of the time and the luminosity of collisions.

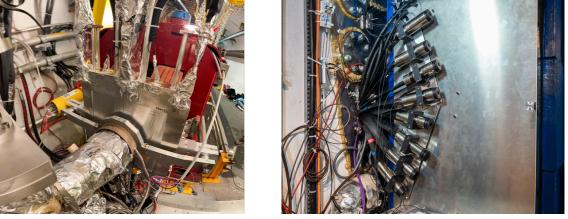
- It will also be used for the study of diffractive physics.

FIT - FDD

FDD-C

Forward Diffractive Detector

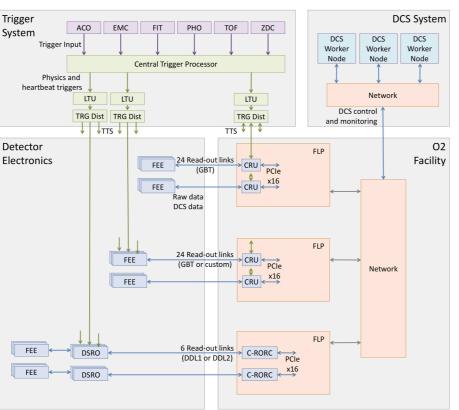

- The FDD detector consists of two subdetectors called FDDA and FDDC.


Each of them includes two detector layers, and each layer consists of four scintillator modules arranged around the LHC beam pipe.
The FDDA and FDDC designations refer to the installation positions at both ends of the ALICE site concerning the interaction point (IP).

FDD installation in ALICE

The subdetector FDDC was already build and it was installed in ALICE cavern side C [2].
The 8 photomultipliers required to collect the light from the subdetector FDDC were installed as well.

- FDDA was build as well and it will be installed in mid-2021.


Online-Offline

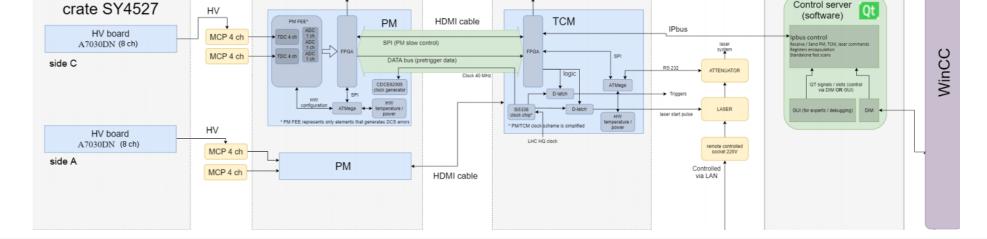
One of the main updates that is being carried out at the LHC during the Long Shutdown number 2 (LS2) is the Online-Offline infrastructure that will be used in Run 3, since the high-precision measurements that will be carried out in the detectors of ALICE, CMS, ATLAS and LHCb experiments will be at a higher speed than the previous runs (Runs 1 and 2). Therefore, the data from the detectors

must be processed immediately online during collisions to reduce the costs and requirements of the computer systems to process and archive such data generated during collisions [3].

Detector Control System

The DCS is one of the most critical software systems that allows the operation of high energy physics experiments (HEP) [4].
All equipment and devices that make up detectors' subsystems must be integrated into DCS's software to allow their control, monitoring, and configuration [5].
Upgrading the existing detectors or installing new detectors with online-offline processing capacities implies to develop new DCS.

FDD Electronics


FDD - DCS

- For FDD, two A7030 high voltage boards are used to power the 16 photomultipliers that will transform the optical signals that comes from FDDA and FDDC to analog electrical signals. Two PMs are used for FDD, one for each subdetector (FDDA and FDDC), which processes the analog signals from the photomultipliers.

- FDD has only one Trigger and Clock Module (TCM) that enables the reading of data from the two PMs. Each PM is connected to the dedicated TCM via an HDMI cable to transmit "pre-trigger" data, slow-control data and LHC clock distribution. The commands, configuration data, and status data are sent from the ALICE control system to the TCMs via a 1 Gb Ethernet optical link using an IPbus (UDP based protocol) [6].

- Laser pulses are used for time and amplitude calibration, as well as monitoring of aging and radiation damage of the FDD subdetectors. Finally, ControlServer passes control and status parameters between each FIT subsystem's TCM and WinCC-OA as a part of Detector Control System [7].

•			
	VME Crate	VME Crate	Subsystem WN
HV CAEN	GBT	GBT	·
croto SV/527	Ť	1	Control server

Control Hierarchy for the FDD

RUN_UNIT

LASER

Software architecture

The Detector Control System: - It will monitor the status of the FDDA and FDDC subdetectors.

- It will also take a reading of the electronics present in such experiment, for example: Processing Modules (PM), Trigger and Clock Module (TCM), and the Infrastructure

of the experiment, such as the power supply devices and the temperature of the CRATES where various electronic devices are located.

HV_CONTROL_A

PMT_X_Y

X -> [2-3] Y -> [0-7]

SIDE_A

PM_Channel_1

FEE_CONTROL_

SIDE_A_PM1

PM Channel

PM_Channel_2

HV_CONTROL_C

PMT_X_Y

X -> [0-1] Y -> [0-7]

PM_Channel_1

FEE_CONTROL_C

SIDE_C_PM1

PM_Channel_3

PM_Channel_2

FDD_CRATE

FDD_VME_CRATE

SIDE_A_VME

Hardware architecture

The FDD DCS has the following hardware architecture:

- The supervision layer consists of Operator Nodes (ON) that provide the user interfaces to the operators and it is located in ALICE control room.

- The process control layer consists of Worker Nodes (WN), PLCs and PLC-like devices that interface to the experiment equipment. It is located in the Counting Room.

- The field layer comprises field devices such as power supplies, field bus nodes, sensors, actuators, and more. This is located in the ALICE Cavern and Magnet.

Hardware FDD-DCS

Regarding the state of development of the Control System for the FDD Detector:

- Using the WinCC-OA software, the hierarchy of the CAEN A7030 high voltage boards used to power the photomultipliers was configured.

- Such CAEN boards are inserted in the CAEN_CRATE SY4527LC that is going to be located in Counting Room 4 (CR4).

Logic FDD-DCS

- Another part of the development of the control system that was done is to configure the logical hierarchy corresponding to the photomultipliers of the FDD detector on side A and side C of the cavern of the ALICE experiment.

- This is necessary for the control system to identify the 16 photomultipliers and read the data from such photomul-tipliers during collisions.

SIDE_A
 LAYER:
 PMT_2_i
 PMT_2_i
 PMT_2_i
 PMT_2_i
 PMT_2_i
 PMT_2_i
 PMT_2_i
 PMT_3_i
 PMT_3_i
 PMT_3_i
 PMT_3_i
 SIDE_C
 PMT_3_i
 SIDE_C
 LAYER0
 PMT_0_1
 PMT_1_1
 PMT_1_2
 PMT_1_3

Finite State Machine FDD-DCS

- The hierarchy of Finite State Machines (FSM) was defined for the upper node and the control nodes of the FDD detector on both sides, A and C, as well as that of the photomultipliers.

This is required for the control system to monitor the status of the FDDA and FDDC detectors, as well as send ON (SWITCH_ON) or OFF (SWITCH_OFF) commands to the 16 photomultipliers.

SCOP Framework Device L X	
	✓ ₽ FDD_DCS1
Device Manager 🛛 🤣	V 🚇 SIDE_A
Mode: O Operation O Configuration	FDD/SIDE_A/LAYER2/PMT_2_0
Mode: Operation O Configuration	FDD/SIDE_A/LAYER2/PMT_2_1
unning on: fdd_dcs	FDD/SIDE_A/LAYER2/PMT_2_2
	FDD/SIDE_A/LAYER2/PMT_2_3
Hardware Logical FSM	FDD/SIDE_A/LAYER3/PMT_3_0
	FDD/SIDE_A/LAYER3/PMT_3_1
✓ I fdd_dcs:	FDD/SIDE_A/LAYER3/PMT_3_2
✓ Image: ✓ PD_DCS1	FDD/SIDE_A/LAYER3/PMT_3_3
> 💬 SideA	✓ ഈ SIDE_C
> 💬 SideC	FDD/SIDE_C/LAYER0/PMT_0_0
	FDD/SIDE_C/LAYER0/PMT_0_1
	FDD/SIDE_C/LAYER0/PMT_0_2
	FDD/SIDE_C/LAYER0/PMT_0_3
	FDD/SIDE_C/LAYER1/PMT_1_0
	FDD/SIDE_C/LAYER1/PMT_1_1
	FDD/SIDE_C/LAYER1/PMT_1_2
	FDD/SIDE_C/LAYER1/PMT_1_3 CONFIGURE
	CONFIGURE
	SWITCH_ON
	OFF ON A
	SWITCH OFF
Identity: fdd_dcs:Manager1	
Start/Restart All Stop All	
Stary Restart All Stop All	EBROR CONFIGURE
DIM DNS NODE: localhost	CONFIGURE
	SWITCH_ON
Right click opens options. Close	TRIPPED + WARNING
ight chert opens options. Close	· · · · · ·
14	

User interface / Alarms

FDD-DCS main panel

Using the WinCC-OA software, the first version of the main panel of the FDD-DCS has been developed.

The DCS must have a main control panel to be managed by the operator who is in the shift at the central control system of the ALICE experiment. In such a way that the operator will be able to monitor the general status of the detector during collisions

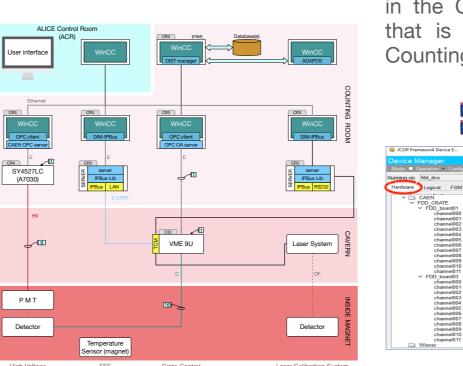
FDDA and FDDC subpanels

The first version of the panel to monitor and control the A and C side of the FDD detector was also developed.

The main panel of DCS must have subpanels of control that allow the operator to obtain in more detail the status of the different parts of the detector, as well as to be able to control such parts. For example:

In the FDDA subpanel, the operator can set and read the voltage and current applied by the high voltage boards to the photomultipliers.
It can also monitor and control the status for each photomultiplier of the FDDA detector.

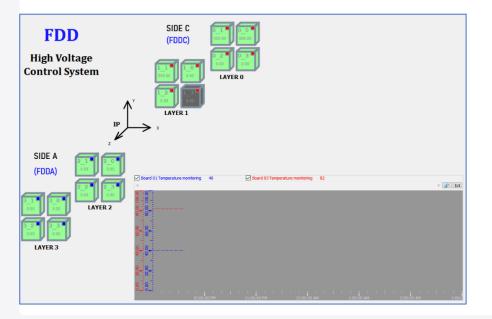
CAEN Boards temperature


Alarms were defined in such a way that the DCS operator can identify on the main panel if any of the sides of such FDD detector has any type of problem:

- For example, layer 1 of side C of the detector has a gray background, while layers of side A has a green background. This indicates that the detector on side C

Voltage and current for PMTs

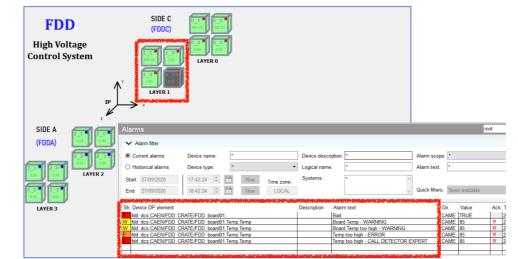
Another example of an alarm that was defined is the voltage level received by the photomultipliers connected to the FDD detector on side A and side C.


- The alarm is triggered either when the voltage level is above or below the set

SIDE_AC_TCM

PM_Channel_3

PM_Channel_2



Enter and accept the value

OR

has a problem, while side A is working properly.

- The operator can obtain more detail of the problem by accessing the alarm panel. In this case the problem has to do with the temperature of the high voltage board for the FDD detector.

value.

- The same applies to the current level received by the photomultipliers.

evice name: *		Device description	1: *	Alarm sc	ope: *	
vice type: *						
		 Logical name: 	*	Alarm tex	d: *	_
6:52:56 🗘 📑	Now Time zor	Systems:	*			
			~			
						Ac
	/FDD board01/cha	:52:56 C Now LOCA	52:56 Now LOCAL Description Alar /FDD board01/channel002 actual vMon Volta	Description Alarm text /FDD board01/channel002.actual vMon Voltage High - WARNING	Description Alarm text Dir. /FDD board01/channel002.actual vMon Voltage High - WARNING CAME	Description Alarm text Dir. Value /FDD board01/channel002 actual vMon Voltage High - WARNING CAME 15

✓ Ala	arm filter											
Cur	rent alarms	Device name:	*			Device desc	ription:	*		Alarm se	cope:	*
⊖ Hist	torical alarms	Device type:	*			 Logical nam 	e:	•		Alarm te	xt:	•
Start:	04/10/2020	16:52:56 🗘	-	Now	Time zone	Systems:		*	^			
End:	04/10/2020	17:52:56 🗘	2	Now	LOCAL				~	Quick fil	ters:	None ava
	ice DP element					Description	Alarm			Dir.	Value	
W fdd dcs:CAEN/FDD CRATE/FDD board01/channel000.actual.iMon					Curren	t High - WARNING		CAME	12	1		
		CRATE/FDD board01/channel003.actual.iMon					Current High - WARNING				16	- 1
		CRATE/FDD board01						It Too High - ERROR			16	

Comments and outlook

The construction of the FDD detector is on time and it is expected to be successfully constructed and commissioned during 2021. The FDD detector will increase the time resolution compare with ALICE Diffractive Detector (AD) used in Run-2 (2015-2018), and it will provide triggers at level zero for ALICE [8].

The development of Detector Control System for FDD is going good as well. The software and hardware architecture already proposed will allow to release a fully operative DCS for the FDD detector to comply with the new Online-Offline infrastructure requirements of ALICE experiment. Finite State Machine testing is currently on going with WinCC-OA and high voltage boards. Finally, it is expected to have the DCS ready for commissioning during 2021.

References

 M. Slupecki, "The Fast Interaction Trigger for the ALICE Upgrade," PhD Thesis, University of Jyväskylä, Jyväskylä, Finland, 2020.
 S. Rojas-Torres, "The Forward Diffractive Detector for ALICE," presented at the ICHEP 2020, Prague, Czech Republic, Jul. 31, 2020, Accessed: Dec. 10, 2020. [Online]. Available: https://indico.cern.ch/event/868940/contributions/3813555/.

[3] Ananya et al., "O²: A novel combined online and offline computing system for the ALICE Experiment after 2018," Journal of Physics: Conference Series, vol. 513, no. 1, p. 012037, Jun. 2014, doi:10.1088/1742-6596/513/1/012037.

[4] ALICE Collaboration et al., "The ALICE experiment at the CERN LHC," Journal of Instrumentation, vol. 3, no. 08, pp. S08002–S08002, Aug. 2008, doi:10.1088/1748-0221/3/08/s08002.

[5] Fukunaga C. Standardization of Detector Control Systems. Jpn J Appl Phys. vol 39, Part 1, no. 4A, 2000, pp.1898–1902.

[6] D. Finogeev, T. Karavicheva, D. Serebryakov, A. Tikhonov, W. H. Trzaska, and N. Vozniuk, "Readout system of the ALICE Fast Interaction Trigger," J. Inst., vol. 15, no. 09, pp. C09005–C09005, Sep. 2020, <u>doi:10.1088/1748-0221/15/09/C09005</u>.

[7] P. Chochula et al., "Challenges of the ALICE Detector Control System for the LHC Run3," in Proceedings of the ICALEPCS2017, Barcelona, Spain, Jan. 2018, no. 16, pp. 323–327, doi: https://doi.org/10.18429/JACoW-ICALEPCS2017-TUMPL09.

[8] J. C. Cabanillas-Noris, M. I. Martínez-Hernández, and I. León-Monzón, "A Large Ion Collider Experiment (ALICE) Diffractive Detector Control System for RUN-II at the Large Hadron Collider," International Journal of Computer and Systems Engineering, vol. 10, no. 3, pp. 118–129, 2016.