

Detecting reactor antineutrinos with a LAr bubble chamber

XXXV Annual Meeting DPYC-SMF, May 2021

Luis J. Flores

IF-UNAM

Detecting reactor antineutrinos with a LAr bubble chamber

XXXV Annual Meeting DPYC-SMF, May 2021

Luis J. Flores

IF-UNAM

Outline:

- Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)
- CEvNS at nuclear reactors
- LAr Scintillating Bubble Chamber
- Final Remarks

$E_{\nu} \leq 50 \text{ MeV}$

$$\frac{d\sigma}{dT} = \frac{G_F^2}{2\pi} M_N Q_w^2 \left(2 - \frac{M_N T}{E_v^2}\right) F^2(q^2)$$

Maximum NR energy:
$$T_{\text{max}} = \frac{2E_{\nu}^2}{M_N}$$

 $\frac{d\sigma}{dT} = \frac{G_F^2}{2\pi} M_N Q_w^2 \left(2 - \frac{M_N T}{E_\nu^2}\right) F^2(q^2)$

Maximum NR energy: $T_{\text{max}} = \frac{2E_{\nu}^2}{M_N}$

COHERENT Collaboration, Science 357,1123 (2017)

55

- Ingredients for CEvNS:
- Intense neutrino flux
- Low-threshold detectors
- Great background discrimination

- Ingredients for CEvNS:
- Intense neutrino flux
- Low-threshold detectors
- Great background discrimination

COHERENT Collaboration, Science 357,1123 (2017) & Phys.Rev.Lett. 126 (2021) 1, 012002

Why nuclear reactors?

✓ Intense antineutrino flux

✓ Completely coherent scattering $(E_{\nu} \le 10 \text{ MeV})$

 \checkmark Only $\bar{\nu}_e$

✓ Different channel than SNS:

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$\downarrow$$

$$e^{+} + \nu_{e} + \bar{\nu}_{\mu}$$

Why nuclear reactors?

✓ Intense antineutrino flux

✓ Completely coherent scattering $(E_{\nu} \le 10 \text{ MeV})$

 \checkmark Only $\bar{\nu}_e$

✓ Different channel than SNS:

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$\downarrow$$

$$e^{+} + \nu_{e} + \bar{\nu}_{\mu}$$

Experiment	Nuclear Reactor	Power [GW
TEXONO [41]	Kuo-Sheng Nuclear Power Station	2.9
CONUS [37]	Brokdorf	3.9
νGeN [72]	Kalinin Nuclear Power Plant	~ 1
MINER [36]	INER [36] TRIGA 1	
$\nu \text{CLEUS} [38]$	FRM2	4
Ricochet [39]	Chooz Nuclear Power Plant	8.54
RED-100 [40] Kalinin Nuclear Power Plant		~ 1
SBC [73]	ININ (or Laguna Verde)	10^{-3} (2)
CONNIE [74]	Angra 2	3.8
vIOLETA [75]	Atucha II	2
SoLid [76]	BR2	$(0.4, 1) \times 10^{-10}$
NEON [77] Hanbit Nuclear Power Plan		2.8

Taken from D. Aristizabal-Sierra, V. De Romeri, LJF, D.K. Papoulias, JHEP 03 (2021) 294

Liquid argon scintillating bubble chamber*

Combines features of scintillation detectors and bubble chambers

- * Insensitive to electron recoils
- Sub-keV thresholds (~100 eV)
- Single bubble created from nuclear recoils
- Energy resolution for backgrounds above ~5 keV

* LJF, E. Peinado, E. Alfonso-Pita, E. Vázquez-Jáuregui, SBC Collaboration (https://journals.aps.org/prd/pdf/10.1103/PhysRevD.103.L091301)

Bubble nucleation

- Superheated fluid
- Energy deposition causes local boiling
 Bubble nucleation
- * Events detected by cameras, piezoacoustic sensors, and SiPMs

Proposed reactor locations

1 MWth

TUTO NACIONAL

3 - 10 m

10 kg Target mass 100 kg

CENTRAL NUCLEAR LAGUNA VERDE

Power 2 GWth

Baseline 30 m

Expected detection rates

Expected detection rates

Physics reach

Statistical analysis:

$$\chi^{2} = \min_{\alpha,\beta,\gamma} \left[\left(\frac{N_{\text{meas}} - (1+\alpha)N_{\text{th}}(X,\gamma) - (1+\beta)B_{\text{reac}}}{\sigma_{\text{stat}}} \right)^{2} + \left(\frac{\alpha}{\sigma_{\alpha}} \right)^{2} + \left(\frac{\beta}{\sigma_{\beta}} \right)^{2} + \left(\frac{\gamma}{\sigma_{\gamma}} \right)^{2} \right], \qquad \sigma_{\text{stat}} = \sqrt{N_{\text{meas}} + (1+R)B_{\text{cosm}}}$$

Physics reach

Fitted variable

$$\chi^{2} = \min_{\alpha,\beta,\gamma} \left[\left(\frac{N_{\text{meas}} - (1+\alpha)N_{\text{th}}(\boldsymbol{X},\gamma) - (1+\beta)B_{\text{reac}}}{\sigma_{\text{stat}}} \right)^{2} + \left(\frac{\boldsymbol{\alpha}}{\sigma_{\alpha}} \right)^{2} + \left(\frac{\boldsymbol{\beta}}{\sigma_{\beta}} \right)^{2} + \left(\frac{\boldsymbol{\gamma}}{\sigma_{\gamma}} \right)^{2} \right],$$

Nuisance parameters

$$\sigma_{\rm stat} = \sqrt{N_{\rm meas} + (1+R)B_{\rm cosm}}$$

- α : flux
- β : background
- γ : threshold

Physics reach

Fitted variable

Nuisance parameters

$$\left(\frac{\beta}{\sigma_{\beta}}\right)^{2} + \left(\frac{\beta}{\sigma_{\beta}}\right)^{2} + \left(\frac{\gamma}{\sigma_{\gamma}}\right)^{2}\right],$$

$$\sigma_{\rm stat} = \sqrt{N_{\rm meas} + (1+R)B_{\rm cosm}}$$

- α : flux
- β : background
- γ : threshold

•	Power	Distance	Anti- ν flux	Threshold			
s			uncertainty	uncertainty			
	(MW_{th})	(m)	(%)	(%)			
	1	3	2.4	5			
	2000	30	2.4	5			
	2000	30	1.5	2			

Physics reach: weak mixing angle

$$\frac{d\sigma}{dT} = \frac{G_F^2}{2\pi} M_N Q_w^2 \left(2 - \frac{M_N T}{E_\nu^2}\right) F^2(q^2),$$

 $Q_w = Z(1/2 - 2\sin^2\theta_w) + N(-1/2)$

0.240 $(\eta)^2 \hat{\theta}_W^2(\eta)$ 0.230

Physics reach: neutrino magnetic moment

COHERENT COHERENT $\left(\frac{d\sigma}{dT}\right)_{\rm SM} + \left(\frac{d\sigma}{dT}\right)_{\mu_{\nu}}$ $\left(\frac{d\sigma}{dT}\right)_{\mu_{\nu}} = \pi \frac{\alpha_{\rm EM}^2 Z^2 \mu_{\nu}^2}{m_e^2} \left(\frac{1}{T} - \frac{1}{E_{\nu}} + \frac{T}{4E_{\nu}^2}\right) F^2(q^2)$ 10^{-8}

Physics reach: Z'boson

$$\frac{d\sigma}{dT} = \frac{G_F^2}{2\pi} M_N Q_w^2 \left(2 - \frac{M_N T}{E_\nu^2}\right) F^2(q^2),$$

 $Q_w = Z(g_p^V + 2\epsilon_{\alpha\alpha}^{uV} + \epsilon_{\alpha\alpha}^{dV}) + N(g_n^V + \epsilon_{\alpha\alpha}^{uV} + 2\epsilon_{\alpha\alpha}^{dV})$

$$\epsilon_{\alpha\alpha}^{qV} = \frac{g' x_{\alpha} x_{q}}{\sqrt{2}G_{F}(q^{2} + M_{Z'}^{2})}$$

0.10.015 10^{-3} 10^{-4} 10^{-5} 10^{-6}

Final Remarks

LAr Scintillating Bubble Chamber offers:

- * High chance of detecting reactor CEvNS
- Opportunity for precision low-energy measurements
- experiments

* More stringent limit to new physics signals, compared with other CEvNS

Thank you for your attention