Experimental status of CPV in Bs mixing

Jhovanny Andres Mejia Guisao Results of the ATLAS, LHCb and CMS collaborations UNIVERSIDAD DE ANTIOQUIA, COLOMBIA

Annual Meeting: Division of Particles and Fields of the Mexican Physical Society. (DPyC-SMF). 11-13 May 2021, Mexico.

Introduction

- ϕ_s is a CPV phase arising from the interference between B_s decays proceeding directly and through B_s - \overline{B}_s mixing to a CP final state.
- $B_s \rightarrow J/\psi \varphi$ golden channel used to measure CP-violation phase φ_s potentially sensitive to New Physics.
 - No direct CPV.
 - Only one weak phase.
 - Easy to reconstruct with high S/B.
- In SM ϕ_{s} is related to the CKM elements and predicted with high precision
 - $\circ \quad \beta_{s} = -36.96^{+0.72}_{-0.84} \, \text{mrad} \quad \underline{\text{CKMFitter group}}$
- Other quantities related to \mathbf{B}_{s} mixing extracted along with $\boldsymbol{\phi}_{s}$ with the same analysis : Γ_{s} , $\Delta\Gamma_{s}$, $|\lambda|$, Δm_{s} .

$$\lambda = \frac{q}{p} \frac{\overline{A}_{f.s.}}{A_{f.s.}}, \, |B_{L,H}\rangle = p |B_s^0\rangle \pm q |\overline{B}_s^0\rangle$$

Introduction

B_{d,s}

d,s

PDG 2018 $\Delta \Gamma_s [\mathrm{ps}^{-1}]$ $\overline{u}, \overline{c}, t$ HFLAV 0.14 , S D0 8 fb⁻¹ PDG 2018 68% CL contours $(\Delta \log \mathcal{L} = 1.15)$ 0.12 W CMS 19.7 fb⁻¹ d,s 0.10 Combined CDF 9.6 fb⁻¹ u,c,t b 0.08 HCb 3 fb⁻¹

Sensitive probe of **New Physics** in **B**_s mixing

-0.0

ATLAS 19.2 fb-

-0.2

Precise test of Standard Model

Universidad de Antioquia (Medellin)

Jhovanny Andres Mejia Guisao

0.06

-0.4

XXXV Annal Meeting DPyC-SMF

0.2

 $\phi_s^{c\bar{c}s}$ [rad]

Outline

Physics results

- ★ Measurement of the CP-violating phase φ_{e} in B₂→J/ $\psi \varphi$ decays in ATLAS at 13 TeV. ATLAS <u>CERN-EP-2019-218</u>, <u>Eur. Phys. J. C 81 (2021) 342.</u>
- ★ Updated measurement of time-dependent *CP*-violating observables in $B_s \rightarrow J/\psi K+K$ decay. LHCb <u>EUR.PHYS.J.C79(2019)706</u>.
- ★ Measurement of the CP violating phase φ_s in the B_s→J/ψφ(1020)→μ+μ−K+K− channel in CMS proton-proton collisions at 13 TeV.
 <u>CMS-PAS-BPH-20-001</u>, Phys. Lett. B 816 (2021) 136188.

Universidad de Antioquia (Medellin)

Jhovanny Andres Mejia Guisao

General comment for the three analysis 1

- Angular analysis to separate the different CP eigenstate of the final state
 - Helicity angle of **K+** in the ϕ rest frame.
 - Polar angle of μ + in the J/ ψ rest frame
 - Azimuthal angle of μ + in the J/ ψ rest frame.
- The differential decay rate
 - O_i are time-dependent functions, g_i are angular functions, and α is a set of physics parameters.

$$\frac{d^4\Gamma(\mathsf{B}^0_{\mathrm{s}})}{d\Theta\,d(ct)} = f(\Theta, ct, \alpha) \propto \sum_{i=1}^{10} O_i(ct, \alpha)\,g_i(\Theta)$$

we need flavor tagging to separate B_s from B_s decays, since the final state is the same for the two mesons.

$$O_i(ct,\alpha) = N_i e^{-\Gamma_s t} \left[a_i \cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + b_i \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) + c_i \cos(\Delta m_s t) + d_i \sin(\Delta m_s t) \right]$$

Universidad de Antioquia (Medellin)

General comment for the three analysis 2

i	$g_i(heta_{\mathrm{T}},\psi_{\mathrm{T}},\varphi_{\mathrm{T}})$	N_i	a _i	b_i	Ci	d_i
1	$2\cos^2\psi_{\mathrm{T}}(1-\sin^2\theta_{\mathrm{T}}\cos^2\varphi_{\mathrm{T}})$	$ A_0(0) ^2$	1	D	С	-S
2	$\sin^2\psi_{\rm T}(1-\sin^2\theta_{\rm T}\sin^2\varphi_{\rm T})$	$ A_{\ }(0) ^2$	1	D	С	-S
3	$\sin^2\psi_{\mathrm{T}}\sin^2\theta_{\mathrm{T}}$	$ A_{\perp}(0) ^2$	1	-D	С	S
4	$-\sin^2\psi_{ m T}\sin2 heta_{ m T}\sinarphi_{ m T}$	$ A_{\parallel}(0) A_{\perp}(0) $	$C\sin(\delta_{\perp}-\delta_{\parallel})$	$S\cos(\delta_{\perp}-\delta_{\parallel})$	$\sin(\delta_{\perp} - \delta_{\parallel})$	$D\cos(\delta_{\perp}-\delta_{\parallel})$
5	$\frac{1}{\sqrt{2}}\sin 2\psi_{\mathrm{T}}\sin^{2}\theta_{\mathrm{T}}\sin 2\varphi_{\mathrm{T}}$	$ A_0(0) A_{\parallel}(0) $	$\cos(\delta_{\parallel}-\delta_{0})$	$D\cos(\delta_{\parallel}-\delta_{0})$	$C\cos(\delta_{\parallel}-ec{\delta}_{0})$	$-S\cos(\delta_{\parallel}-\delta_{0})$
6	$\frac{1}{\sqrt{2}}\sin 2\psi_{\rm T}\sin 2\theta_{\rm T}\cos \varphi_{\rm T}$	$ A_0(0) A_{\perp}(0) $	$C\sin(\delta_{\perp}-\delta_0)$	$S\cos(\delta_{\perp}-\delta_{0})$	$\sin(\delta_{\perp}-\delta_0)$	$D\cos(\delta_{\perp}-\delta_0)$
7	$\frac{2}{3}(1-\sin^2\theta_{\rm T}\cos^2\varphi_{\rm T})$	$ A_{S}(0) ^{2}$	1	-D	С	S
8	$\frac{1}{3}\sqrt{6}\sin\psi_{\mathrm{T}}\sin^{2}\theta_{\mathrm{T}}\sin2\varphi_{\mathrm{T}}$	$ A_{S}(0) A_{\parallel}(0) $	$C\cos(\delta_{\parallel}-\delta_{S})$	$S\sin(\delta_{\parallel}-\delta_{S})$	$\cos(\delta_{\parallel}-\delta_S)$	$D\sin(\delta_{\parallel}-\delta_{S})$
9	$\frac{1}{3}\sqrt{6}\sin\psi_{\mathrm{T}}\sin2\theta_{\mathrm{T}}\cos\varphi_{\mathrm{T}}$	$ A_{S}(0) A_{\perp}(0) $	$\sin(\delta_{\perp}-\delta_S)$	$-D\sin(\delta_{\perp}-\delta_{S})$	$C\sin(\delta_{\perp}-\delta_{S})$	$S\sin(\delta_{\perp}-\delta_{S})$
10	$\frac{4}{3}\sqrt{3}\cos\psi_{\mathrm{T}}(1-\sin^{2}\theta_{\mathrm{T}}\cos^{2}\varphi_{\mathrm{T}})$	$ A_{S}(0) A_{0}(0) $	$C\cos(\delta_0-\delta_S)$	$S\sin(\delta_0-\delta_S)$	$\cos(\delta_0-\delta_S)$	$D\sin(\delta_0 - \delta_S)$

The terms *C*, *S*, and *D* contain the information about *CP* violation and are defined as:

$$C = \frac{1 - |\lambda|^2}{1 + |\lambda|^2}, \qquad S = -\frac{2|\lambda|\sin\phi_s}{1 + |\lambda|^2}, \qquad D = -\frac{2|\lambda|\cos\phi_s}{1 + |\lambda|^2},$$

Universidad de Antioquia (Medellin)

Jhovanny Andres Mejia Guisao

General comment for the three analysis 3

Universidad de Antioquia (Medellin)

Jhovanny Andres Mejia Guisao

CERN-EP-2019-218:

Measurement of the CP-violating phase ϕ_s in $B_s \rightarrow J/\psi \varphi$ decays in ATLAS at 13 TeV.

Universidad de Antioquia (Medellin)

Jhovanny Andres Mejia Guisao

Datasets and Selection

- → This analysis follows previous measurement using **19.2** fb⁻¹ of 7 TeV and 8 TeV ("run 1").
- → The new analysis uses datasets from 2015 to 2017 with 13 TeV totaling 80.5 fb⁻¹.
- → MC Samples
 - Signal B_s→J/ψφ MC events.
 - MC samples for peaking backgrounds: $B_d \rightarrow J/\psi K^*$, $B_d \rightarrow J/\psi K\pi$, $\Lambda_b \rightarrow J/\psi Kp$.
 - MC samples for tagging calibration channel $B^+ \rightarrow J/\psi K^+$.
- → Full decay reconstruction using inner detector and muon detectors:
 - Events collected with mixture of triggers based on J/ψ→μ⁺μ⁻ identification, with muon pT thresholds of either 4 GeV or 6 GeV (vary over run periods).
 - No lifetime or impact parameter cut at HLT level.
 - φ selection **pT(K±)>1** GeV, Invariant mass window 22 MeV.
 - B candidates 4-track vertex χ²/NDF <3, (5.15 5.65) GeV. Vertex fit performed with J/ψ mass constraint.</p>

Universidad de Antioquia (Medellin)

Jhovanny Andres Mejia Guisao

Flavour tagging

- □ The analysis uses opposite-side tagging (OST)
 - □ Use $\mathbf{b}-\overline{\mathbf{b}}$ pair correlation to infer initial signal flavour from the other \mathbf{B}_s meson.
 - Provide the probability of the signal candidate to be $\mathbf{B}_{s} \overline{\mathbf{B}}_{s}$ at production.
- Let uses 4 tagging methods: "Tight" muons, electrons, Low-pT muons, Jet.
 - $\square \quad b \rightarrow I \text{ transitions are clean tagging method.}$
 - \Box **b** \rightarrow **c** \rightarrow **I** and neutral B-meson oscillations dilute the tagging.
 - □ Jet-charge. information from tracks in b-tagged jet, when no lepton is found.
- ❑ Charge of pT -weighted tracks in a cone around the opposite primary object, used to build per-candidate B_s tag probability.
- $\Box \quad \text{Calibrated with } B^+ \rightarrow J/\psi K^+ \text{ sample}$

Tag calibration and performance

- Self tagging non oscillating channel
- Opposite side lepton or jet, with tracks in cone $\Delta R < 0.5$

$$Q_x = \frac{\sum_{i}^{N \text{ tracks}} q_i \cdot (p_{\mathrm{T}i})^{\kappa}}{\sum_{i}^{N \text{ tracks}} (p_{\mathrm{T}i})^{\kappa}}$$

Tag method	$\epsilon_x [\%]$	D_x [%]	T_x [%]
Tight muon	4.50 ± 0.01	43.8 ± 0.2	0.862 ± 0.009
Electron	1.57 ± 0.01	41.8 ± 0.2	0.274 ± 0.004
Low- $p_{\rm T}$ muon	3.12 ± 0.01	29.9 ± 0.2	0.278 ± 0.006
Jet	12.04 ± 0.02	16.6 ± 0.1	0.334 ± 0.006
Total	21.23 ± 0.03	28.7 ± 0.1	1.75 ± 0.01

- Efficiency: ε. Fraction of signals with a specific tagger.
- Dilution: D = (1 2w), where w is the miss-tag probability.
- Tagging Power: figure of merit of tagger performance.

$$TP = \varepsilon D^2 = \varepsilon (1-2w)^2$$

Mass-lifetime-angular Maximum Likelihood Fit

wi is a weighting factor to account for the trigger efficiency

 $\mathbf{B}_{\mathbf{A}} \rightarrow \mathbf{J}/\mathbf{\psi}\mathbf{K}^*, \mathbf{\Lambda}_{\mathbf{h}} \rightarrow \mathbf{J}/\mathbf{\psi}\mathbf{K}\mathbf{p}$ peaking backgrounds derived from MC, PDG and the LHCb $\Lambda_{\mathbf{h}} \rightarrow \mathbf{J}/\mathbf{\psi}\mathbf{K}\mathbf{p}$ measurement; fixed shape and relative contribution in the fit.

Combinatorial background description, derived from data sidebands; angular distribution described by spherical harmonics and fixed in the fit

$$\ln \mathcal{L} = \sum_{i=1}^{N} w_i \cdot \ln[f_{s} \cdot \mathcal{F}_{s}(m_i, t_i, \sigma_{m_i}, \sigma_{t_i}, \Omega_i, P_i(B|Q_x), p_{T_i})]$$

+
$$f_{\mathrm{s}} \cdot f_{B^0} \cdot \mathcal{F}_{B^0}(m_i, t_i, \sigma_{m_i}, \sigma_{t_i}, \Omega_i, P_i(B|Q_x), p_{\mathrm{T}_i})$$

$$+f_{s} \cdot f_{\Lambda_{b}} \cdot \mathcal{F}_{\Lambda_{b}}(m_{i}, t_{i}, \sigma_{m_{i}}, \sigma_{t_{i}}, \Omega_{i}, P_{i}(B|Q_{x}), p_{T_{i}})$$

+ $(1 - f_{\mathrm{s}} \cdot (1 + f_{B^0} + f_{\Lambda_b}))\mathcal{F}_{\mathrm{bkg}}(m_i, t_i, \sigma_{m_i}, \sigma_{t_i}, \Omega_i, P_i(B|Q_x), p_{\mathrm{T}_i})]$

Measured variables:

 B_s mass m_i B_s proper decay time t_i and its uncertainty σ_{ti} 3 angles $\Omega_i(\theta_T, \psi_T, \phi_T)$ B_s momentum p_T B_s tag probability $p_{B|\Omega_i}$ tagging method M_i

Universidad de Antioquia (Medellin)

Projection and results of the fit

Universidad de Antioquia (Medellin)

Jhovanny Andres Mejia Guisao

XXXV Annal Meeting DPyC-SMF

Combination results with 7 TeV and 8 TeV

- A Best Linear Unbiased Estimate (BLUE) combination is performed to combine the current result with the Run 1 measurement.
- The BLUE combination uses the measured values and uncertainties of the parameters as well as the correlations between them.

Universidad de Antioquia (Medellin)

EUR.PHYS.J.C79(2019)706:

Updated measurement of time-dependent *CP*-violating observables in $B_s \rightarrow J/\psi K+K$ - decay.

Universidad de Antioquia (Medellin)

Analysis strategy and selection

- Boosted decision tree is trained to select signal candidates.
- The Λ_b background is statistically subtracted by inserting simulated Λ_b decays into the data sample with negative weights.
- **B**_d \rightarrow **J**/ ψ **K** π background is neglected (systematic uncertainty assigned due to).
- \Box Vertex fit performed with J/ψ mass constraint.

Universidad de Antioquia (Medellin)

Tagging the B_s meson flavour at production

Universidad de Antioquia (Medellin)

Fit projections

Universidad de Antioquia (Medellin)

Jhovanny Andres Mejia Guisao

XXXV Annal Meeting DPyC-SMF

Results of the fit

1.9 fb⁻¹ data 13 TeV

 $\phi_s = -0.083 \pm 0.041 \pm 0.006 \, \mathrm{rad}$

 $|\lambda| = 1.012 \pm 0.016 \pm 0.006$

 $\Gamma_s - \Gamma_d = -0.0041 \pm 0.0024 \pm 0.0015 \,\mathrm{ps}^{-1}$

 $\Delta \Gamma_s = 0.077 \pm 0.008 \pm 0.003 \, \mathrm{ps}^{-1}$

 $\Delta m_s = 17.703 \pm 0.059 \pm 0.018 \,\mathrm{ps}^{-1}$ $|A_{\perp}|^2 = 0.2456 \pm 0.0040 \pm 0.0019$ $|A_0|^2 = 0.5186 \pm 0.0029 \pm 0.0024$ $\delta_{\perp} - \delta_0 = 2.64 \pm 0.13 \pm 0.10 \,\mathrm{rad}$

 $\delta_{\parallel} - \delta_0 = 3.06 \stackrel{+ 0.08}{_{- 0.07}} \pm 0.04 \, \text{rad.}$

Combination with Run 1 $B_s \rightarrow J/\psi KK$ $\phi_s = -0.080 \pm 0.032 \text{ rad},$ $|\lambda| = 0.993 \pm 0.013,$ $\Gamma_s = 0.6570 \pm 0.0023 \text{ ps}^{-1}$

$$\Delta \Gamma_s = 0.0784 \pm 0.0062 \,\mathrm{ps}^{-1}$$

Combination with other LHCb results

$$\begin{split} \phi_s &= -0.041 \pm 0.025 \text{ rad}, \\ |\lambda| &= 0.993 \pm 0.010, \\ \Gamma_s &= 0.6562 \pm 0.0021 \text{ ps}^{-1} \\ \Delta \Gamma_s &= 0.0816 \pm 0.0048 \text{ ps}^{-1} \end{split}$$

CMS-PAS-BPH-20-001:

Measurement of the CP violating phase ϕ_s in the Bs $\rightarrow J/\psi \phi(1020) \rightarrow \mu + \mu - K + K - channel in proton-proton collisions at 13 TeV.$

Universidad de Antioquia (Medellin)

Trigger strategy and selection

Trigger: $J/\psi \rightarrow \mu + \mu -$ candidate plus an additional muon

- The additional muon is used to tag the flavour of the $B_s^{},$ via $b{\rightarrow}\mu X$ decays of the other b hadrons.
- Improves the tagging efficiency at the cost of the reduced number of signal events.
- No displacement cut at HLT level.

Offline selection

$\begin{array}{c} p_{T}(\mu) \\ \eta(\mu) \\ p_{T}(K) \\ \eta(K) \\ \left m(\mu^{+}\mu^{-}) - m_{J/\psi}^{PDG} \right \\ m(K^{+}K^{-}) - m_{\phi(1020)}^{PDG} \end{array}$	≥ 3.5 GeV ≤ 2.4 ≥ 1.2 GeV ≤ 2.5 < 150 MeV < 10 MeV
$p_T(B_s^0)$	≥ 11 GeV
$ct(B_s^0)$	≥ 70 µm
$B_s^0 \rightarrow J/\psi \phi Vtx \text{ prob}$	≥ 0.1%
$m(\mu^+\mu^-K^+K^-)$	[5.24, 5.49] GeV

This analysis uses **96.4 fb⁻¹** data collected in 2017 and 2018.

Vertex fit performed with J/ψ mass constraint.

Universidad de Antioquia (Medellin)

Tagger performance

Tagger performance evaluated using $B^+ \rightarrow J/\psi K^+$ events

Data set	ϵ_{tag}	$\omega_{ ext{tag}}$	P _{tag}	
2017	$(45.7 \pm 0.1)\%$	(27.1 ± 0.1) %	$({f 9.6}\pm 0.1)\%$	
2018	$(50.9 \pm 0.1)\%$	$(27.3 \pm 0.1)\%$	(10.5 ± 0.1) %	
Run-1	$(8.31 \pm 0.03)\%$	$(30.2 \pm 0.3)\%$	$(1.31 \pm 0.03)\%$	

> The Efficiency is higher due to the requirement of an additional OS muon at the HLT.

> Final performance, normalized by the event rate, ~ 50% higher w.r.t. Run-1.

Universidad de Antioquia (Medellin)

Projection and results of the fit

Universidad de Antioquia (Medellin)

Combination with 8 TeV results

 $\phi_{
m s}=-21\pm44\,(
m stat)\pm10\,(
m syst)\,
m mrad,$ $\Delta\Gamma_{
m s}=0.1032\pm0.0095\,(
m stat)\pm0.0048\,(
m syst)\,
m ps^{-1}$

- The results presented are further combined with the earlier CMS result [Phys.Lett.B757(2016)97].
- The systematic uncertainties in the two measurements are treated as uncorrelated.
- The statistical and systematic uncertainties are summed in quadrature and correlations between the parameters obtained in each measurement are taken into account

Summary

	φ _s [Mrad]	ΔΓ _s	Reference	sd] ° 0.12 ⊻⊽	CMS, J/ψK*K*, 116.1 fb ⁻¹ ATLAS Vs = 7, 8, and 13 TeV 68% CL contours
ATLAS	-87 ± 42	0.0657 ± 0.0057	<u>CERN-EP-2019-218</u>	0.1	
LHCb	-80 ± 32	0.0784 ± 0.0062	EUR.PHYS.J.C79(2019)706	0.08	LHCb, J/\varphi K^{+}, 4.9 fb ⁻¹
CMS	-21 ± 45	0.1032 ± 0.0106	<u>CMS-PAS-BPH-20-001</u>		
SM	$-36.96\substack{+0.84\\-0.72}$	0.087 ± 0.021	CKMFitter group	0.06	- ATLAS, J/ψK ⁺ K ⁻ , 99.7 fb ⁻¹ -0.2 0 0.2

> The CPV phase $\boldsymbol{\varphi}_{s}$ and the decay width difference $\Delta \Gamma_{s}$ are measured using (partial) run 2 data.

- Results combined with Run1 results.
- Results are compatible between experiments and they are consistent with the Standard Model predictions.
- ΔΓ_s shows tensions between experiments (Full Run-2 measurements will clarify the situation).

Universidad de Antioquia (Medellin)

Universidad de Antioquia (Medellin)