

Flavourful Axion and the Peccei-Quinn Symmetry

arXiv:2102:03631

Stefan Nellen

Instituto de Física, UNAM Reunión Anual de la División de Partículas y Campos May 11, 2021

In collaboration with León García, Newton Nath and Eduardo Peinado

4 3 4 3 4 3 4

Outline

- 2 A Flavourful Axion Model
- 3 Numerical Results
- 4 Conclusions

< (T) >

▶ < ∃ >

-

æ

Axions and the Peccei-Quinn Symmetry $U(1)_{PQ}$ $U(1)_{PQ}$ as a Flavour Symmetry

Axions and the Peccei-Quinn Symmetry $U(1)_{PQ}$

- CP-violating term in QCD Lagrangian $\theta \frac{g_s^2}{32\pi^2} G\widetilde{G}$, where $\widetilde{G}^{a\,\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} G^a_{\rho\sigma}$.
- $\overline{\theta} = \theta + \operatorname{Arg} \left(\operatorname{Det}(M^u M^d) \right) < 10^{-10}$ by neutron EDM¹.
- Unnaturally small?
- Introduce $U(1)_{PQ}$ and scalar field to SM².
- Axion appears as pseudo-Goldstone boson of $U(1)_{PQ}^{3}$, and $\mathcal{L}_{QCD+axion} \supset \frac{a}{f_{a}} \frac{g_{s}^{2}}{32\pi^{2}} G\widetilde{G} + \overline{\theta} \frac{g_{s}^{2}}{32\pi^{2}} G\widetilde{G}$.
- Quasi shift-symmetry of axion, $a \rightarrow a f_a \overline{\theta}$, solves strong CP problem.

э

¹Abel et al. 2020.

²R. D. Peccei and Quinn 1977.

³Weinberg 1978; Wilczek 1978.

Axions and the Peccei-Quinn Symmetry $U(1)_{PQ}$ $U(1)_{PQ}$ as a Flavour Symmetry

$U(1)_{PQ}$ as a Flavour Symmetry

- $U(1)_{PQ}$ can be a flavour symmetry.
- Identified with the Froggatt-Nielsen symmetry $U(1)_{FN}$.
- This gives rise to a flavourful axion or axión sabroso.
- FN symmetry can explain fermion mass hierarchy⁴.
- Flavon field σ couples to fermions like $\frac{C_{ij}^{f}}{\Lambda^{n}}\overline{F_{L}^{i}}Hf_{R}^{j}\sigma^{n}$ or $\frac{C_{ij}^{f}}{\Lambda^{n}}\overline{F_{L}^{i}}\widetilde{H}f_{R}^{j}\sigma^{n}$.
- After FN symmetry breaking $y_{ij}^f \varepsilon^n \overline{F_L^i} H f_R^j$ are the SM Yukawa terms, and $\varepsilon = \frac{v_{\sigma}}{\Lambda} \sim 0.2$, hierarchy comes form powers of *n*.

< ∃ > _ ∃

⁴Froggatt and Nielsen 1979.

Axions and Flavour Symmetries Quark Sector A Flavourful Axion Model Numerical Results Conclusions Scalar Sector and the Axion

Quark Sector

Field/Symmetry	QiL	UiR	d _{iR}	Hu	H_d	σ
$SU(2)_L \times U(1)_Y$	(2, 1/6)	(1, 2/3)	(1, -1/3)	(2, -1/2)	(2, 1/2)	(1, 0)
$U(1)_{PQ}$	(9/2, -5/2, 1/2)	(-9/2, 5/2, -1/2)	(-9/2, 5/2, -1/2)	1	1	1

- Flavon σ is coupled to quark sector.
- Couplings up to dimension 5 are: $\mathcal{L} \supset \frac{C_{12}^{\mu}}{\Lambda} \overline{Q}_{1L} H_u u_{2R} \sigma + \frac{C_{21}^{\mu}}{\Lambda} \overline{Q}_{2L} H_u u_{1R} \sigma + \frac{C_{23}^{\mu}}{\Lambda} \overline{Q}_{2L} \widetilde{H}_d u_{3R} \sigma^*$ $+ \frac{C_{32}^{\mu}}{\Lambda} \overline{Q}_{3L} \widetilde{H}_d u_{2R} \sigma^* + y_{33}^{\mu} \overline{Q}_{3L} H_u u_{3R} + (u \to d).$
- Next order is dimension 8.
- NNI texture, with the (3, 3) entry generated at dimension 4

$$M^{u/d} = \begin{pmatrix} 0 & \varepsilon v_{u/d} C_{12}^{u/d} & 0 \\ \varepsilon v_{u/d} C_{21}^{u/d} & 0 & \varepsilon v_{d/u} C_{23}^{u/d} \\ 0 & \varepsilon v_{d/u} C_{32}^{u/d} & y_{33}^{u/d} v_{u/d} \end{pmatrix}.$$

Quark Sector UV Completion of the Quark Sector Lepton Sector Scalar Sector and the Axion

UV Completion of the Quark Sector

< ∃⇒

Can limit mass-generating terms!

Axions and Flavour Symmetries Quark Sector A Flavourful Axion Model Numerical Results Conclusions Scalar Sector and the Axion

Lepton Sector

Field/Symmetry	L _{iL}	ℓ _{iR}	Ni	σ'
$SU(2)_L \times U(1)_Y$	(2, -1/2)	(1, -1)	(1, 0)	(1, 0)
$U(1)_{PQ}$	(1, -3, 0)	(0, -2, -1)	(0, -2, -1)	2

- Second flavon σ' is introduced.
- Neutrino masses generated in a type-I seesaw scenario, from $\mathcal{L} \supset y_1^{\prime\prime} \overline{L}_{eL} H_u N_1 + y_2^{\prime\prime} \overline{L}_{\mu L} \widetilde{H}_d N_2 + y_3^{\prime\prime} \overline{L}_{\tau} H_u N_3$ $+ \frac{M_1}{2} \overline{N_1^c} N_1 + \frac{y_{12}^{\prime\prime}}{2} \overline{N_1^c} N_2 \sigma' + \frac{y_{13}^{\prime\prime}}{2} \overline{N_1^c} N_3 \sigma + \frac{y_{33}^{\prime\prime}}{2} \overline{N_3^c} N_3 \sigma'.$

• The neutrino mass matrix gets an
$$A_2$$
 structure $\begin{pmatrix} 0 & a & 0 \\ a & b & c \\ 0 & c & d \end{pmatrix}$.

- Charged leptons mass matrix is diagonal at leading order.
- $0\nu\beta\beta$ at tree-level, and normal ordering.

< ∃ >

Axions and Flavour Symmetries Quark Sector A Flavourful Axion Model Numerical Results Conclusions Scalar Sector and the Axion

Scalar Sector and the Axion

- The 4 or 6 scalar fields present lead to a complex scalar potential.
- Axion is the PQ Goldstone, orthogonal to the Z-boson Goldstone, i.e. $a = A_{PQ} - \left[\frac{\sum_{i} X_{i} Y_{i} v_{i}^{2}}{\sqrt{\sum_{i} Y_{i}^{2} v_{i}^{2}} \sqrt{\sum_{i} X_{i}^{2} v_{i}^{2}}}\right] A_{Z}.$
- Axion mass and axion-photon coupling depend on f_a^{5} , as $m_a \approx 5.70 \left(\frac{10^{12} \text{ GeV}}{f_a}\right) \mu \text{eV}$ and $g_{a\gamma} \approx \frac{\alpha}{2\pi f_a} \left(\frac{E}{N} 1.92\right)$.
- Strong hierarchy between the scalars' vevs leads to $f_a \approx \frac{v_{\sigma}}{\sqrt{2}N}$.
- Here N = 5 and $E = \frac{28}{3}$.
- Compared to the SU(5) GUT⁶, where $\frac{E}{N} = \frac{8}{3}$, $\frac{|g_{g\gamma}^{SU(5)}|}{|g_{g\gamma}^{Flaxion}|} \approx 14$.

⁵Grilli di Cortona et al. 2016.

⁶Georgi and Glashow 1974.

э

χ[∠] Fit Flavour Violating Decays with Axions Flavour Violating Higgs Couplings Flavourful Axion as a Dark Matter Candidate

Quark Sector

Parameter	Best fit	Observable	Global-fit value		Model best fit	
$A_{\mu}/(10^{-2} \text{GeV})$	1.519	Observable	Best-fit value	1σ range	Woder best-Int	
$B_u/(10^{-2} { m GeV})$	-5.368	$\theta_{12}^q/^\circ$	13.09	13.06 ightarrow 13.12	12.988	
C_u/GeV	-3.004	$\theta_{13}^q/^\circ$	0.207	0.202 ightarrow 0.213	0.2000	
$D_u/(10^1 \text{GeV})$	3.562	$\theta_{23}^q/^\circ$	2.32	2.29 ightarrow 2.37	2.381	
$E_u/(10^2 \text{GeV})$	1.679	$\delta^q/^\circ$	68.53	66.06 ightarrow 71.10	68.720	
$A_d/(10^{-2}{ m GeV})$	-1.233	$m_u/(10^{-3} \text{GeV})$	1.288	0.766 ightarrow 1.550	1.2743	
$B_d/(10^{-2} \text{GeV})$	1.228	$m_c/(10^{-1} \text{GeV})$	6.268	6.076 ightarrow 6.459	6.2592	
$C_d/(10^{-1} \text{GeV})$	-3.074	m_t/GeV	171.68	170.17 ightarrow 173.18	171.687	
$D_d/(10^{-1} { m GeV})$	-4.782	$m_d/(10^{-3} \text{GeV})$	2.751	2.577 ightarrow 3.151	2.7330	
E_d/GeV	-2.793	$m_s/(10^{-2} \text{GeV})$	5.432	5.153 ightarrow 5.728	5.4311	
$\alpha_u/^\circ$	96.56	m_b/GeV	2.854	2.827 ightarrow 2.880	2.8501	
$\beta_u/^{\circ}$	98.23	χ^2_q			1.0901	

< ロ > < 回 > < 回 > < 回 > < 回 >

Ξ.

ζ² Fit Iavour Violating Decays with Axions Iavour Violating Higgs Couplings Iavourful Axion as a Dark Matter Candi

Lepton Sector

Parameter	Best fit	
$a/(10^{-3} \mathrm{eV})$	9.933	
$b/(10^{-2} \mathrm{eV})$	2.646	
$c/(10^{-2} \mathrm{eV})$	2.475	
$d/(10^{-2} \mathrm{eV})$	2.264	
$\phi_a/^\circ$	29.87	
$\phi_b/^\circ$	91.88	
$\phi_c/^\circ$	3.03	
$\phi_d/^\circ$	-109.97	

Observable	(Model best-fit	
Observable	Best-fit value	1σ range	Woder best-in
$\theta_{12}^{\prime}/^{\circ}$	34.5	$33.5 \rightarrow 35.7$	34.85
$\theta_{13}^{\prime}/^{\circ}$	8.45	8.31 ightarrow 8.61	8.432
$\theta_{23}^{l}/^{\circ}$	47.7	$46.0 \rightarrow 48.9$	48.11
$\delta'/^{\circ}$	218	191 ightarrow 256	258.8
$\alpha/^{\circ}$			65.27
$\beta/^{\circ}$			265.08
$\Delta m_{21}^2/(10^{-5} \mathrm{eV}^2)$	7.55	$7.39 \rightarrow 7.75$	7.571
$\Delta m_{32}^2/(10^{-3} \text{ eV}^2)$	2.424	$2.394 \rightarrow 2.454$	2.4221
$\sum m_{\nu}/(10^{-2} \text{ eV})$			6.453
m _e /MeV	0.4865763	$0.4865735 \rightarrow 0.4865789$	-
m_{μ}/GeV	0.10271897	$0.10271866 \rightarrow 0.10271931$	-
m_{τ} / GeV	1.74618	$1.74602 \rightarrow 1.74633$	-
χ^2_l			2.0053

イロト イヨト イヨト イヨト

Ξ.

 χ^2 Fit Flavour Violating Decays with Axions Flavour Violating Higgs Couplings Flavourful Axion as a Dark Matter Candidate

Flavour Violating Decays with Axions

- Flavour violating Yukawa couplings can lead to $q_i \rightarrow q_j a$.
- Can be probed through meson decays.

•
$$\Gamma(K^+ \to \pi^+ a) \approx \frac{1.9 \times 10^{-9} \text{GeV}^3}{v_\sigma^2}$$
.

- E949 Collaboration constrain $\frac{\Gamma(K^+ \to \pi^+ a)}{\Gamma_{Total}(K^+)} < 7.3 \times 10^{-117}.$
- Relationship $f_a \approx \sqrt{2} v_\sigma N$ implies $f_a \ge 7 \times 10^9$ GeV.
- $m_a < 0.7 \times 10^{-3} \, {
 m eV}$ and $|g_{a\gamma}({
 m GeV}^{-1})| < 0.8 \times 10^{-14}$.
- $B^+ \rightarrow K^+ a$ (Belle-II⁸) provides $f_a \ge 6 \times (10^6 10^7)$ GeV.

⁷Adler et al. 2008.

不是下 不是下

⁸Calibbi et al. 2017.

 χ^2 Fit Flavour Violating Decays with Axions Flavour Violating Higgs Couplings Flavourful Axion as a Dark Matter Candidate

Flavour Violating Decays with Axions

⁹O'Hare 2020.

3 x 3

 χ^2 Fit Flavour Violating Decays with Axions Flavour Violating Higgs Couplings Flavourful Axion as a Dark Matter Candidate

Flavour Violating Higgs Couplings

- $V_{u/d} \ll V_{\sigma/\sigma'}$.
- Two Higgs bosons: $h \approx h_0^u \cos \alpha + h_0^d \sin \alpha$ and $H \approx -h_0^u \sin \alpha + h_0^d \cos \alpha$.
- $v_{SM} = v_u \sin \beta + v_d \cos \beta$.
- Flavour conservation if $\tan \alpha = \cot \beta$.
- $t \to hc$ sets bounds¹⁰.
- Effective Lagrangian and χ^2 fit: $\left|\frac{\cos \alpha}{\sin \beta} \left(1 - \tan \alpha \tan \beta\right)\right| \leq 17 \frac{\Gamma_{t \to hc}^{Exp}}{[\text{GeV}]}$.

¹⁰ATLAS 2016; Vos et al. 2016.

 χ^2 Fit Flavour Violating Decays with Axions Flavour Violating Higgs Couplings Flavourful Axion as a Dark Matter Candidate

Flavourful Axion as a Dark Matter Candidate

- Through the misalignment mechanism¹¹ cold axions can be produced, with $\Omega_a h^2 \approx 2 \times 10^4 \left(\frac{f_a}{10^{16} \text{GeV}}\right)^{7/6} \langle \theta_i^2 \rangle.$
- Relic density can be matched to $\Omega_{DM} h^2 \sim 0.12$.
- For $\theta_i \in (0, 2\pi)$ and $5 \times 10^{10} \text{ GeV} < f_a < 1 \times 10^{15} \text{ GeV}$.
- N > 1 implies formation of domain walls, which have to be destabilized or inflated away.

¹¹Fox, Pierce, and Thomas 2004.

4 3 b

Conclusions

- $U(1)_{PQ}$ can be identified with $U(1)_{FN}$.
- Mass and vev hierarchies.
- At leading order mass quark mass matrix gets NNI structure and neutrino mass matrix gets A₂ structure.
- Theoretical predictions match χ^2 fit.
- Flavourful axion arises after PQ symmetry breaking.
- Flavour violating decays with the axion set bounds on f_a , m_a , and $g_{a\gamma}$.
- Possibility of FCNCs being present.
- Flavourful axion can account for dark matter.
- Future possibilities: KSVZ-like model, gauge symmetries.

・ 回 ト ・ ラ ト ・ ラ ト

Thank you for listening!

・日・ ・ヨ・ ・ヨ・