The Standard Model	Topological Defects	Cosmic Strings

The structure of cosmic strings of a U(1) gauge field for the conservation of B-L

Victor D. Muñoz Vitelly, José A. García Hernández, Wolfgang Bietenholz

Universidad Nacional Autónoma de México Instituto de Ciencias Nucleares

- Baryon number (B) conservation, Stückelberg (1938)
- Lepton number (L) conservation, Konopinsky and Mahmoud (1953)
- At very high energy, the SM allows *B* and *L* conservation violations (unobserved)
- However B L is still conserved
- Gauging leads to a B-L anomaly, which can be cured by adding ν_R
- We can get a mass term for ν_R via the Higgs mechanism from an additional χ

The Higgs Mechanism in the SM

Lagrangian with
$$\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_+\\ \phi_0 \end{pmatrix}$$
 and gauge fields $W_\mu(x)$ and $B_\mu(x)$ for $SU(2)_L$ and $U(1)_Y$
 $\mathcal{L}_H = D^\mu \Phi^\dagger D_\mu \Phi - V(\Phi) - \frac{1}{4} W^{\mu\nu} W_{\mu\nu} - \frac{1}{4} B^{\mu\nu} B_{\mu\nu}$
 $V(\Phi) = m^2 \Phi^\dagger \Phi + \lambda (\Phi^\dagger \Phi)^2, \quad D_\mu \Phi = \left[\partial_\mu + i \frac{g}{2} W^a_\mu(x) \sigma_a + i \frac{g'}{2} B_\mu(x) \right] \Phi.$

Case of symmetry breaking with $m^2 < 0$, we can select the vacuum solution

$$\Phi = \frac{v}{\sqrt{2}} \begin{pmatrix} 0\\1 \end{pmatrix}.$$

- Massive Higgs, W and Z bosons
- A massless photon
- · Lepton and quarks acquire mass via Yukawa interactions

00000 0000 00000	The Standard Model	Topological Defects	Cosmic Strings
	000000	0000	0000000

B and L violation

• B and L violation appears through the Adler-Bell-Jackiw anomaly

$$\partial^{\mu}J^{B}_{\mu} = -\frac{N_{g}}{32\pi^{2}}\epsilon^{\mu\nu\rho\sigma}\operatorname{Tr}[W_{\mu\nu}(x)W_{\rho\sigma}(x)]$$

• Quantum corrections known as sphaleron processes allow the violation

Figure: Sphaleron transition between sections of the EW vacua, image Papaefstathiou, A. et al. arXiv:1910.04761

Each transition fulfills

$$\Delta B = \Delta L$$

- Hence the difference B L is still conserved
- B L is an exact symmetry and it is more natural if we gauge it

The Standard	Model
000000	

Anomaly in B - L gauge

- The B-L gauge field \mathcal{A}_{μ} for $U(1)_{B-L}$
- This leads to an anomaly

$$\partial^{\mu}J^{B-L}_{\mu} = -\frac{1}{16\pi^2}\mathcal{F}^{\mu\nu}\mathcal{F}_{\mu\nu}$$

• It comes from the fermion triangle diagram

1

Figure: Fermion triangle diagram.

• Adding ν_R with B - L = -1 cancels the anomaly

Extension of the SM

Lagrangian with $SU(2)_L \times U(1)_{\alpha Y + \beta(B-L)}$ local symmetry

$$\mathcal{L}_{b} = D_{\mu} \Phi^{\dagger} D^{\mu} \Phi + d_{\mu} \chi^{*} d^{\mu} \chi - V(\Phi, \chi) - \frac{1}{4} W^{\mu\nu}_{a} W^{a}_{\mu\nu} - \frac{1}{4} \mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu},$$

with the potential

$$V(\Phi,\chi) = \mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2 + {\mu'}^2 \chi^* \chi + \lambda' (\chi^* \chi)^2 - \kappa \Phi^{\dagger} \Phi \chi^* \chi$$

the covariant derivatives

$$D_{\mu}\Phi = \left(\partial_{\mu} + i\frac{g}{2}W^{a}_{\mu}(x)\sigma_{a} + i\frac{\alpha}{2}\mathcal{A}_{\mu}\right)\Phi, \quad d_{\mu}\chi = \left(\partial_{\mu} + 2i\beta\mathcal{A}_{\mu}\right)\chi,$$

and the field strength tensors

$$W_{\mu\nu} = \partial_{\mu}W_{\nu} - \partial_{\nu}W_{\mu} + g[W_{\mu}, W_{\nu}], \quad \mathcal{F}_{\mu\nu} = \partial_{\mu}\mathcal{A}_{\nu} - \partial_{\nu}\mathcal{A}_{\mu}.$$

Extension of the SM

A first generation of matter

$$\begin{split} \mathcal{L}_{\mathbf{f}} &= (\overline{\nu}_L, \overline{e}_L) i \gamma^{\mu} D_{\mu} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} + (\overline{u}_L^c, \overline{d}_L^c) i \gamma^{\mu} D_{\mu} \begin{pmatrix} u_L^c \\ d_L^c \end{pmatrix} + \sum_{F=\nu, e, u^c, d^c} \overline{F}_R i \gamma^{\mu} d_{\mu} F_R \\ f_e(\overline{\nu}_L, \overline{e}_L) \Phi e_R + f_d(\overline{u}_L^c, \overline{d}_L^c) \Phi d_R^c + f_u(\overline{u}_L^c, \overline{d}_L^c) \widetilde{\Phi} u_R^c \\ &+ f_{\nu}(\overline{\nu}_L, \overline{e}_L) \widetilde{\Phi} \nu_R + f_M \overline{\nu}_R \chi C \overline{\nu}_R^T + \mathsf{h. c.} \end{split}$$

With
$$\widetilde{\Phi} = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_0^* \\ -\phi_+^* \end{pmatrix}$$
.

• The neutrinos in the Majorana-like term give B - L = 2, thus χ must have B - L = -2.

	The Stan	ndard Model	Topological Defects
000000 •000	00000	00	0000

Homotopy Groups

Consider two maps that preserve the base point $f, g: S^n \to \mathcal{M}$. These maps are homotopic if they can be deformed smoothly into one another. They form an equivalence class and each map is an element of the group called π_n .

Figure: Two distinct topological spaces, image from Wikipedia.

The winding number of a curve is the number of times a curve turns over a point

Figure: Winding number.

Topological Defects

Some examples

- Quantized magnetic flux lines in type-II superconductors
- Vortices in superfluids
- Dislocations in crystals
- Some proposals in and beyond the SM with cosmic strings

Figure: Vortices in the local magnetic field of a 200 nm thin film of YBCO superconductor, image from Wells, F. et al. Sci Rep 5, 8677 (2015). Visualization of filaments in ⁴He superfluid, image from Fonda, E. et al. arXiv:1210.5194 (2012).

The Standard Model	Topological Defects
	0000

Vortices in type-II Superconductors

The free energy density F has a series expansion in ψ around T_c

$$F = F_0 + \alpha |\psi|^2 + \frac{\beta}{2} |\psi|^4 + \frac{H^2}{8\pi} + \frac{1}{2m} \left| i\hbar \nabla \psi + \frac{2e}{c} \vec{A} \psi \right|^2.$$

In order to obtain the eq. of motion, we take a variation with respect to ψ^* , requiring it to be minimal.

Figure: Contour lines of the solution $|\psi|$ with square lattice symmetry and current as a vector field in a the vortex.

he Standard Model	Topological Defects	Cosmic Strings
000000	0000	0000000

Vortices and Topology

Generally for a scalar field ϕ which transforms under the representation of a compact Lie Group \mathcal{G} . Let \mathcal{M} be the vacuum manifold and let $v \in \mathcal{M}$. Then for any $g \in \mathcal{G}$, $gv \in \mathcal{M}$.

- The points on \mathcal{M} are in one-to-one correspondence with the cosets $\mathcal{M} = \mathcal{G}/\mathcal{H}$
- A solution

$$\phi(\varphi) = g(\varphi)v,$$

might be regarded as defining a loop in \mathcal{M} , a map $S^1 \to \mathcal{M}$. Whether or not there is a vortex solution depends on the topological characterization of this loop.

• Here we use the symmetry group U(1) and we have a non-trivial

$$\pi_1(U(1)) = \mathbb{Z}$$

Equations of motion for local U(1) symmetry

We take the $U(1)_{\alpha Y+\beta(B-L)}$ as a local symmetry associated to a gauge field $\mathcal{A}_{\mu},$ the Lagrangian

$$\mathcal{L} = D_{\mu} \Phi^{\dagger} D^{\mu} \Phi + d_{\mu} \chi^* d^{\mu} \chi - V(\Phi, \chi) - \frac{1}{4} \mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu},$$

with the potential

$$V(\Phi,\chi) = \mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2 + \mu'^2 \chi^* \chi + \lambda' (\chi^* \chi)^2 - \kappa \Phi^{\dagger} \Phi \chi^* \chi$$

the covariant derivatives (heavy W_{μ} decouples and fixed fermion background)

$$D_{\mu}\Phi = \partial_{\mu}\Phi + i\frac{\alpha}{2}\mathcal{A}_{\mu}\Phi, \quad d_{\mu}\chi = \partial_{\mu}\chi + 2i\beta\mathcal{A}_{\mu}\chi,$$

and the field strength tensor

$$\mathcal{F}_{\mu\nu} = \partial_{\mu}\mathcal{A}_{\nu} - \partial_{\nu}\mathcal{A}_{\mu}.$$

The Standard Model	Topological Defects	Cosmic String
000000	0000	0000000

We take the ansatz in cylindrical coordinates (r, φ, z)

$$\Phi = \begin{pmatrix} 0\\1 \end{pmatrix} \phi(r) e^{in\varphi}, \quad \chi = \xi(r) e^{in'\varphi}, \quad \mathcal{A}_{\mu} = \mathcal{A}_{\varphi} \hat{\varphi} = \frac{a(r)}{r} \hat{\varphi},$$

where $\phi, \xi, a \in \mathbb{R}$. The equations of motion are

$$\begin{aligned} \frac{d^2\phi}{dr^2} + \frac{1}{r}\frac{d\phi}{dr} - \frac{n^2}{r^2}\phi - \mu^2\phi - 2\lambda\phi^3 + \kappa\phi\xi^2 - h\frac{a}{r^2}\phi(2n+ha) &= 0, \\ \frac{d^2\xi}{dr^2} + \frac{1}{r}\frac{d\xi}{dr} - \frac{n'^2}{r^2}\xi - \mu'^2\xi - 2\lambda'\xi^3 + \kappa\xi\phi^2 - h'\frac{a}{r^2}\xi(2n'+h'a) &= 0, \\ \frac{d^2a}{dr^2} - \frac{1}{r}\frac{da}{dr} &= 2h\phi^2(n+ha) + 2h'\xi^2(n'+h'a). \end{aligned}$$

We use the boundary conditions

$$\begin{split} \phi(r=0) &= 0, \quad \xi(r=0) = 0, \quad a(r=0) = 0, \\ \lim_{r \to \infty} \phi(r) &= v, \quad \lim_{r \to \infty} \xi(r) = v', \quad \lim_{r \to \infty} a(r) = -\frac{n}{h} = -\frac{n'}{h'}. \end{split}$$

The Standard Model

Topological Defects

Cosmic Strings

Cosmic Strings solutions

In all these plots we use v = 0.5, v' = 1, $\lambda = 1 = \lambda'$. The variation of these parameters does not modify the general behaviour of the solutions. Also h = n and h' = n'. Winding numbers establish the behaviour of the solutions. $\kappa \in [-1, 1]$.

• Winding numbers: n = 0, n' = 1

Figure: Cosmic strings solutions with Higgs and gauge fields.

he Standar	d Model

Topological Defects

Cosmic Strings

Cosmic Strings solutions

Figure: Cosmic strings solutions with Higgs and gauge fields.

The Standard Mod	lel	

Topological Defects

Cosmic Strings

Cosmic Strings solutions

Figure: Cosmic strings solutions with Higgs and gauge fields.

The Standard	Model

Summary and Conclusions

- As B-L is an exact symmetry of the SM, we gauge it with \mathcal{A}_{μ}
- $\bullet\,$ To cancel the anomaly we add ν_R
- $\bullet~$ We give mass to ν_R by adding χ
- Now neutrinos can have Dirac and Majorana mass terms
- We study cosmic string solutions and identify their profiles for ${\cal A}_{\mu}, \Phi$ and χ
- We find the behaviour of cosmic strings being dominated by the winding numbers
- Particles might change their masses while crossing the cosmic string

References

- Griffiths, D., Introduction to Elementary Particles. Second, Revised Edition. WILEY-VCH Verlag GmbH & Co. (2009).
- Schwartz, M. D., Quantum Field Theory and the Standard Model. Cambridge University Press (2014).
- Higgs, Peter W., Broken symmetries and the masses of gauge bosons. Physical Review Letters 13 (16), 508. (1964).
- Kopnin, N. Vortices in type II superconductors: Structure and Dynamics. Part I Isotropic superconductors. (1996).
- Hindmarsh, M. B. & Kibble, T. W. B., Cosmic Strings. Rep. Prog. Phys. 58 477 (1995).