Production of light nuclei in p-p collisions and its relevance to the search for dark matter in cosmic rays

> Arturo Menchaca Rocha Instituto de Física, UNAM

Particles and Fields, SMF 11/05/2021

Antinuclei production studies@IFUNAM

Developing instruments: two decades

AMS-RICH Aerogel Characterization & Aging

ALICE VOA & VO-plus

A common scientific interest?

- RPP: B.D. Fields (Illinois) and S. Sarkar (Oxford):
- "BBN still marks the boundary between the established and the speculative in Big Bang cosmology"
- "Speculative BB": baryogenesis, dark matter...

Can ALICE generate data of interest to AMS02?

BB and LHC: very different time scales

Inter-nuclear cascade: S. Nagamiya & M. Gyulassy, Adv. In Nucl. Phys, 13(1984)201 $(\geq 1 \text{ A} \cdot \text{GeV})$ collisions and do not result in substantially better agreement with data than statistical models (RA14, TG1-TG7) alone. However, they have provided insight as to rate of approach to thermal equilibrium. A rule of thumb that has emerged from such studies is that after only 3 collisions the form of the distribution, $F_{m,n}^{(1)}$, becomes insensitive to the detailed form of the NN cross section. It is, however, essential to include the direct component (m = n = 1) through a Fermi momentum-averaged free-space NN cross section (TL1, TL2). Fm,n describes the one-particle distribution of m,n clusters

$\lambda \simeq 1.4 \ (\rho_0/\rho) \ \text{fm} < R$

Thermodynamic calculations

S. Das Gupta and A.Z. Mekjian, Phys. Rep. 72(1981)131 cross section for $N + d \rightarrow n + p + N$ is of the order of 100 mb [54] so that $\rho_N \langle \sigma V \rangle \sim 2.5 \times 10^{23}$ /sec at normal nuclear matter density. Thus the reaction rate is an order of magnitude greater than the expansion rate 10^{22} /sec. This conclusion is also confirmed in the detailed calculation of ref. [53]. Consequently, an important conclusion can be drawn which is that an equilibrium concentration is achieved in the initial stages of the expansion. The same arguments can be made for the formation of other light composites and it will be found that they are also in chemical equilibrium [17].

But in ALICE, hadronization occurs in 10⁻²² s

-No time for nuclear d's to fuse
-Only phase space
-Hence, less α's than d's

PHYSICAL REVIEW LETTERS, 105, 7, 2010, 072002

Furhermore, unlike BBN, in ALICE $B \approx 0$

PHYSICAL REVIEW LETTERS, 105, 7, 2010, 072002

ALICE post-hadronization physics is quite relevant

The CPT theorem implies that the difference between the properties of a matter particle and those of its antimatter counterpart is *Completely* described by C-inversion. Since this C-inversion doesn't affect gravitational mass, the CPT theorem predicts that the gravitational mass of antimatter is the same as that of ordinary matter.

M.J.T.F. Cabbolet, <u>Annalen der Physik 522(10), 699-738 (2010)</u>

ALICE produced the most sensitive test, so far

PUBLISHED ONLINE: 17 AUGUST 2015 | DOI: 10.1038/NPHYS3432

LETTERS

Not only mass, binding energy, too.

Question: How are **d**'s and **d**'s produced in space?

Coalescence

Has been measured in Earthly experiments, ALICE

Coalescence and MC simulations

What about AMS02?

SM d,d-bar background

AMS 02 sensitibity to measure such \overline{d} 's

SM $\overline{\mathbf{d}}$ background to Dark Matter signals

• High energy approximation (Duperray et al., 2003):

- Use p and d data to extract an energy-independent \mathbf{p}_0
- Use galactic diffusion equation with measured differential
 x-sections + geometrical limit, and charge symmetry considerations
 for x-section estimates + coalescence (using p₀) to predict d flux.
- Can one do better?: use HEP-MC simulators
 - Fit p at all available energies to choose best MC simulator.
 - Use chosen simulator to extract \mathbf{p}_0 values from measured p and **d** spectra.
 - Use these p₀'s in chosen MC with coalescence afterburner to predict d production x-sections
 - Use galactic (+ AMS-02 matter budget) transport MC to predict **d** flux

Data: from Bevalac to ALICE

Experiment or	Reference	Collision	Final states	p_{lab}	\sqrt{s}
Laboratory				(GeV/c)	(GeV)
ITEP 1	[192]	p+Be	р	10.1	4.5
CERN ¹	[193, 194]	p+p	$\mathbf{p}, \bar{\mathbf{p}}$	19.2	6.1
		p+Be	$\mathbf{p}, \bar{\mathbf{p}}$		
CERN ¹	[194]	p+p	р	24	6.8
NA61/SHINE	[195]	p+C	р	31	7.7
	[85]	p+p	$\mathbf{p}, \bar{\mathbf{p}}$		
NA61/SHINE	[85]	p+p	p, \bar{p}	40	8.8
Serpukhov ¹	[196, 197]	p+p	$\mathbf{p}, \bar{\mathbf{p}}$	70	11.5
	[198]	p+Be	$\mathbf{p}, \bar{\mathbf{p}}$		
	[199]	p+Al	$\mathbf{p}, \bar{\mathbf{p}}$		
NA61/SHINE	[85]	p+p	p, p	80	12.3
CERN-NA49	[82]	p+p	p, \bar{p}	158	17.5
	[83]	p+C	$\mathbf{p}, \bar{\mathbf{p}}$		
CERN-NA61	[85]	p+p	p. 5		
CERN-SPS ¹	[200, 201]	p+Be	p, \bar{p}	200	19.4
		p+Al	$\mathbf{p}, \bar{\mathbf{p}}$		
Fermilab ¹	[202, 203]	p+p	p, \bar{p}	300	23.8
		p+Be	$\mathbf{p}, \bar{\mathbf{p}}$		
Fermilab ¹	[202, 203]	p+p	p, \bar{p}	400	27.4
		p+Be	$\mathbf{p}, \bar{\mathbf{p}}$		
CERN-ISR	[204]	p+p	$\mathbf{p}, \bar{\mathbf{p}}$	1078	45.0
CERN-ISR	[204]	p+p	p, \bar{p}	1498	53.0
CERN-LHCb	[86]	p+He	p	6.5×10^{3}	110
CERN-ALICE	[84]	p+p	p, \bar{p}	4.3×10^{5}	900
CERN-ALICE	[84]	p+p	p, p	2.6×10^{7}	7000

Eulogio Serradilla, PhD Thesis, 2014

Updated data list

d's produced en p+p @ 0.9 -> 7 TeV

PhD Thesis, Eulogio Serradilla, 2014 Phys. Rev. C 97 (2018) 024615

Remember? less α 's than **d**'s $\alpha/\overline{d} \approx 1/10^6$

Best MC for \overline{p} 's?

Best fit

Best choice: EPOS-LHC

MC $\overline{\mathbf{d}}$'s simulation to extract \mathbf{p}_0

Experiment or	Reference	Collision	p_{lab}	\sqrt{s}	No.	of points
Laboratory			(GeV/c)	(GeV)	d	dbar
CERN	[194]	$_{\rm p+p}$	19	6.15	6	0
CERN	[194]	$_{\rm p+p}$	24	6.8	4	0
Serpukhov	[198]	p+p	70	11.5	7	2
		p+Be			6	3
CERN-SPS	[200, 205]	$_{\rm p+Be}$	200	19.4	3	5
		p+Al			3	3
Fermilab	[203]	p+Be	300	23.8	4	1
CERN-ISR	[206, 207, 208]	p+p	1497.8	53	3	8
CERN-ALICE	[155, 209]	$_{\rm p+p}$	4.3×10^{5}	900	3	3
CERN-ALICE	[155, 209, 210]	$_{\rm p+p}$	2.6×10^7	7000	21	20

d-bar invariant differential x-section vs rapidity, from p + p @ 70 GeV/c

Other energies

Comparison with ALICE-LHC data.

p_0 and cross sections for \overline{d} , vs energía del proton

•p₀ variation occurs @ low T
•p₀ is similar for p+p y p+Be.

•P₀ variation in the region most relevant for CR's

Galactic Transport Code (GALPROP)

Diffusion-convection and reacceleration

Convection velocity

Reacceleration coefficient

$$\frac{\partial f(p,\vec{r},t)}{\partial t} = \vec{\nabla} \cdot \left(D_{xx}(p,\vec{r})\vec{\nabla}f - \vec{V}f \right) + \frac{\partial}{\partial p}p^2 D_{pp}\frac{\partial}{\partial p}\frac{1}{p^2}f$$

Decay, annihilation, fragmentation

$$\text{Diffusion coefficient} \qquad -\frac{\partial}{\partial p}\left[\dot{p}f-\frac{p}{3}(\vec{\nabla}\cdot\vec{V})f\right] - \frac{1}{\tau_f}f - \frac{1}{\tau_r}f + q(p,\vec{r},t),$$

Particle density

ISM interactions

Adiabatic processes

d sources

Most significant d sources

GALPROP is certified for p's and α 's

Predicted **d** SM backgound

Low energy increment is due to adiabatic processes energy losses

AMS 02 data? (PRELIMINARY)

Status of Anti-Deuteron Analysis

What about He's? (PRELIMINARY)

 $\overline{He}/\overline{d} \gtrsim 1?$

Thanks!