

# Cosmic Ray Physics 

Lukas Nellen<br>ICN-UNAM<br>lukas@nucleares.unam.mx

ALICE International Masterclass - 2021-03-16

## Summary

O History

- Astrophysics of cosmic rays
© Extended Air Showers
© Detection of Cosmic Rays
- The Pierre Auger Observatory

O The HAWC Observatory
© Auger Open Data

## History

## Radiation in the Universe

- Electromagnetic and particles -



## Unkown ionizing radiation

Early $20^{\text {th }}$ century: The puzzle of the electroscopes

- Loss of charge without ionizing sources
- Unknown ionizing radiation
© What type of radiation?
© Where does it come from?


## Victor Hess, 1912

© Balloon flights
© Reached 5 km
© Scientific payload: 2 electroscopes
© Determine if radiation emitted by earth


Hess bei Ballonlandung (1912).

## Radiation from space

O Measured: density of ion pairs

- Increases with altitude
- Conclusio: Extraterrestrial origin
© Nature unknown
- Gamma rays?

○ Charged radiation?

- Sign of charge?

!. Altitude variation of ionization. (a) Balloon ascent by Hess (1912) carrying two ion chambers. (b) Ascents by Kolhörster (1913, 1914) using ion chambers. (c) Coincidence counter telescope flown by Pfotzer (1936).


## Charged particles in vicinity of the Earth

O Charged particles in the Earth magnetic field:
Numerical simulation of trajectories
© Sandoval-Vallarta, 1932 (Princeton)


## The East-West Effect

© First observed in Mexico City

- Effect stronger closer to the equator
© Luis Alvaréz, 1932 (Then student of Compton)
© Proves:
The cosmic radiation consists predominantly of positively charged particles



## Extended Air Showers: Pierre Auger, 1938



Random coincidence: $2 N_{1} N_{2} \tau$
$N_{1}, N_{2}$ : local rate, $t$ : coincidence window
© Detectors up to 300m apart
© Observed rate higher than predicted
© Correlated, extended flux
© Estimated energy: $\mathbf{1 0}^{15} \mathbf{~ e V ~ = ~ 1 P e V ~}$

## The spectrum of cosmic rays

© spans 12 orders of magnitude
© Non-thermal, power-law
© Galactic origin up to $10^{16}$ eV
© Ultra High Energy Cosmic Rays: Energy above $10^{18}$ eV o $10^{19}$ eV
© Extra-galactic origin


## Sources of Cosmic Rays

## The Fermi Mechanism


© Cosmic Ping-Pong

- Particle confined in plasme
© Gains energy in each crossing of shock front o Observed in interplanetary medium


## Femi acceleration: spectrum

© Energy gain in crossing

$$
\Delta E=\xi E
$$

O Initial energy $\mathrm{E}_{0}$, after n crossings:

$$
E_{n}=E_{0}(1+\xi)^{n}
$$

- Probability to escape source in one turn: Pesc. After n crossings:

$$
P(n)=\left(1-P_{\mathrm{esc}}\right)^{n}
$$

O Number of crossings needed to get to energy E:
$n=\log \left(E / E_{0}\right) / \log (1+\xi)$
© Fraction of particles with energy larger than E:
$N(\geq E) \propto \sum_{m=n}^{\infty}\left(1-P_{\text {esc }}\right)^{m}=\frac{\left(1-P_{\text {esc }}\right)^{n}}{P_{\text {esc }}}$
© Power law spectrum (non-thermal):
$N(\geq E) \propto\left(P_{\text {esc }}\right)^{-1}\left(E / E_{0}\right)^{-\gamma}$
with

$$
\begin{aligned}
\gamma & =-\log \left(1-P_{\text {esc }}\right) / \log (1+\xi) \\
& \approx P_{\text {esc }} / \xi=\xi^{-1} T_{\text {cycle }} / T_{\text {esc }}
\end{aligned}
$$

for the integral spectrum

## Properties of the Fermi mechanism

© Power-law spectrum

$$
\left.N(>E) \propto E^{-\gamma} \quad \text { (int. }\right), \quad N(E) \propto E^{-\gamma-1}
$$

© Spectral index for thin shock: $\gamma \approx 1$
© Maximum energy depends on accelerator
© size and magnetic field
© Lifetime of the source
O Propagation changes spectral index $\Rightarrow$ Source value not directly observable

## Supernovae

© Termination shock with interstellar medium


## Active Galactic Nuclei

> Inner Structure of an Active Galaxy
© Plasma jet with internal shocks
© Terminal shock of jet in
intergalactic medium


## Gamma Ray Bursts



O Hypernovae
© Collision of neutron stars

## Extended Air Showers

## Extended Air Shower schematic

- Particle cascades
in the atmosphere
© Hadrons
© Electro-magnetic EM: $\mathrm{e}^{+}, \mathrm{e}^{-}, \mathrm{y}$
O Muons
- Decays of $n^{ \pm}$
© neutrinos
- invisible
© EM cascades without hadronic

$$
\begin{array}{ll}
\mathbf{N}=\mathbf{1 0}^{6} & \mathrm{~N}(\mathrm{e})=18 \% \\
\mathrm{~N}(\gamma)=18 \%
\end{array} \quad \mathrm{~N}(\mathrm{p}, \mathrm{n}, \pi)=0,3 \% \quad \mathrm{~N}(\mu)=1,7 \%
$$

## Air shower snapshot

© Shower front travels at the speed of light
© Curved because of distance to first interaction
O Delayed particles because of

- Speed less than c
- Geometry of path



## A hadronic air shower in numbers

© Particles at the shower
© 99.88\% EM
© 0.1\% muons
© 0.02\% hadrons
© Energy
© from 100\% in hadrons
© to $90 \% \mathrm{EM}+10 \%$ muons
© Converts energy to particles
(O) We see $\mathrm{E}=\mathrm{mc}^{2}$ in action
© Count particles to determine energy of primary

## Observable: longitudinal development

© Number of particles as function of depth

$$
X=\int_{h}^{\infty} \mathrm{d} z \rho(z)
$$

[ $\mathrm{g} / \mathrm{cm}^{2}$ ]
© Extract

- depth of maximum

$X_{\text {max }}$

© Fluctuations

$$
\left\langle X_{\max }\right\rangle
$$



## Electro-magnetic Heitler model

© In each interaction: particle generates 2

- $₹$ : pair production
- e $\pm$ : y emission in bremsstrahlung
© Interaction length: $\boldsymbol{\lambda}$
- particle type

O Terminates when:

$$
E(X)=E_{\mathcal{C}}
$$

(o) Attenuation for $E>E_{c}$


$$
N(X)=2^{X / \lambda}
$$

$$
E(X)=E_{0} / N(X)
$$

$$
N\left(X_{\max }\right)=E_{0} / E
$$

$$
X_{\max }=\lambda \frac{\log \left(E_{0} / E\right)}{\log 2}
$$

## Extended Heitler model (J. Matthews)

O Hadronic primary

- Fixed interaction length
- Uniform energy redistribution
O Particle types:
- hadrons
including decay into muons when reaching $E_{\text {dec }}\left(\square^{ \pm}\right)$
© Electro-magnetic ( $\Pi^{0}$ decay)

$$
N(n)=N_{\text {had }}^{n} \quad E(n)=E_{0} / N_{\text {tot }}^{n}
$$

$$
E_{d e c}=E_{0} / N_{t o t}^{n_{\max }} \quad n_{\max }=\frac{\ln \left(E_{0} / E_{d e c}\right)}{\ln \left(N_{t o t}\right)}
$$

$$
\ln \left(N_{\mu}\right)=\ln \left(N\left(n_{\max }\right)\right)=n_{\max } \ln \left(N_{\text {had }}\right)
$$



Observable: Lateral Distribution (LDF)

© Number of particles as function of distance from core

## Superposition model

O Primary with mass A and energy E: equivalent to A proton showers with energy E/A

$$
N_{\mu}(A)=A\left(\frac{E_{0} / A}{E_{d e c}}\right)^{\alpha} \quad \alpha \approx 0.925
$$

O Nuclei generate more muons than pure protons

$$
N_{\mu}(A)=N_{\mu}(p) A^{1-\alpha}
$$

## Number of muons in simulations



O Number of muons goes down with E :
$\Pi^{ \pm}$interact before decaying
© Fe produces more muons than $p$
O Differences between models: systematics in simulations

## Longitudinal development





Example: event measured by Auger Collab. (ICRC 2003)

O Mean and fluctuations of $X_{\text {max }}$ are important observables

## Gold standard for simulations: CORSIKA

- Universally used

O Replaced private codes used in collaborations

- Comparison of results simplified

O Different interaction models
© Atmospheric profile configurable
© CONEX: semi-analytic code
© MC for first interactions: fluctuations
O analytic cascade equations (1d, 3d)

- MC close to ground
- Faster than full simulations
- Lateral distribution complicated
© CORSIKA 8 under development re-write in C++


## Interaction models in CORSIKA



## Interaction models in CORSIKA



## The Observatories

## Our instruments at high energies



Pierre Auger Observatory

## HAWC located at Volcán Sierra Negra



## HAWC located at Volcán Sierra Negra




## A big Cherenkov Detector



## A big Cherenkov Detector



## Expansion



## The Pierre Auger Collaboration

17 countries, $\approx 460$ collaborators
Argentina - Australia - Bolivia - Brazil - Colombia -
Czech Republic - France - Germany - Italy - Mexico Netherlands - Poland - Portugal - Romania - Slovenia Spain - United Kingdom - United States


## The Auger Site



## The Auger Site



## A surface detector station



## A surface detector station



## Auger upgrade: scintillators above each detector



Simulated configuration: $2 m^{2}$ scintillator on top of tank

## Merit factor

 (discrimination power)$$
f_{\mathrm{p}, \mathrm{Fe}}=\frac{\left|\left\langle S_{\mathrm{Fe}}\right\rangle-\left\langle S_{\mathrm{p}}\right\rangle\right|}{\sqrt{\sigma^{2} \mathrm{Fe}^{2}+\sigma_{\mathrm{p}}^{2}}}
$$




## A Fluorescence Detector Site



# Reconstruction of basic quantities 

## Air shower detection



## Time $\Rightarrow$ Direction

O Velocity and time $\Rightarrow$ distance

$$
d=c t
$$

© Perpendicular plane $\Rightarrow$ direction


## Surface detector Energy Determination



## Surface detector Energy Determination



## Surface detector Energy Determination



## Combined spectrum

## O Combine results <br> from different techniques and detectors

$$
\begin{aligned}
J(E)= & J_{0}\left(\frac{E}{10^{18.5} \mathrm{eV}}\right)^{-\gamma_{1}} \times \\
& \prod_{i=1}^{3}\left[1+\left(\frac{E}{E_{i j}}\right)^{\frac{1}{\omega_{i j}}}\right]^{\left(\gamma_{i}-\gamma_{j}\right) \omega_{i j}}
\end{aligned}
$$



## Combined spectrum

O Combine results
from different techniques and detectors

$$
\begin{aligned}
J(E)= & J_{0}\left(\frac{E}{10^{18.5 \mathrm{eV}}}\right)^{-\gamma_{1}} \times \\
& \prod_{i=1}^{3}\left[1+\left(\frac{E}{E_{i j}}\right)^{\frac{1}{\omega_{i j}}}\right]^{\left(\gamma_{i}-\gamma_{j}\right) \omega_{i j}}
\end{aligned}
$$

Spectral parameters:
$\mathrm{E}_{12}=5 \pm 0.1 \pm 0.8 \mathrm{EeV}$ $\mathrm{E}_{23}=13 \pm 1 \pm 2 \mathrm{EeV}$ $\mathrm{E}_{34}=46 \pm 3 \pm 6 \mathrm{EeV}$

## Photon Identification

## HAWC Gamma-Hadron separation

Gamma: Smooth Most signal in reference circle

## 7 TeV Gamma Shower

Protón: Rough front Detector with large signal outside reference circle

47 TeV Hadron Shower

circle size $=$ light collected (measures local E)


## HAWC Gamma-Hadron separation

Gamma: Smooth Most signal in reference circle

## 7 TeV Gamma Shower

relatively smooth, low light levels
circle size $=$ light collected (measures local E)

Protón: Rough front Detector with large signal outside reference circle

47 TeV Hadron Shower
clumpy with lots of light far from core

## HAWC Gamma-Hadron separation

Gamma: Smooth
Most signal in reference circle

7 TeV Gamma Shower

circle size $=$ light collected (measures local E)

Protón: Rough front Detector with large signal outside reference circle

## 47 TeV Hadron Shower

compactness | clumpy with lots of |
| :--- |
| light far from core |



# HAWC Gamma-Hadron separation 

## Gamma: Smooth Most signal in reference circle

## 7 TeV Gamma Shower


circle size $=$ light collected (measures local E)

Protón: Rough front Detector with large signal outside reference circle

## 47 TeV Hadron Shower

compactness | clumpy with lots of |
| :--- |
| light far from core |



PINCness
circle size $=$ light collected
(measures local E)

## Auger FD photon discrimination



## Auger SD photon discrimination



## Auger Photon limit



Neutrinos

## Neutrino detection: Geometry of air showers



## Neutrino detection: Geometry of air showers



## Neutrino limits



## Starts to limit some source models and approach cosmogenic flux predictions

## Neutrino followup of Gravitational Wave events


$\begin{array}{lllllllllll}0.00 & 0.04 & 0.08 & 0.12 & 0.16 & 0.20 & 0.24 & 0.28 & 0.32 & 0.36 & 0.40\end{array}$ Fraction of 1 sidereal day



## GW170817 / GRB170817A: NS-NS merger

© NS-NS merger seen in Gravitational Waves
© Confirmed as short GRB (Fermi GBM, Integral)
© Fermi LAT, H.E.S.S., HAWC observer region much later


## Neutrino Followup: IceCube, Antares, Pierre Auger Observatory



O At time of GW trigger:
Event in region of maximum sensitivity for Auger

## GW170817 Neutrino Limits

- 

Time windows: $500 \mathrm{sec}, 14$ days
© Only optimistic model constraint by observations
© Consistent with
© GRB observed offaxis
© Low luminosity GRB

## Incorporation of data for outreach in preparation (mid 2021) <br> Notebooke in kaggle.com https://www.auger.org/opendata/ https://www.auger.unam.mx/opendata/



The Pierre Auger 2021 Open Data is the public release of $10 \%$ of the Pierre Auger Observatory data presented at the 36 th International Cosmic Ray Conference held in 2019 in Madison, USA, following the Auger collaboration open data policy.

This website hosts the datasets for download. An online event display is available to explore the released events, and example analysis codes are provided. See below for a brief overview of the Pierre Auger Observatory and of the Auger Open Data.

## Topics not mentioned

© More on Multi-Messenger studies
© Cosmic ray sources
© Cosmic magnetic fields
© Dark matter
© Fundamental physics
© Lorenz Invarianz Violation (relativity!)
© Magnetic monopoles

- proton-Air cross section

O models of hadronic interactions

Thank youle
https://www.auger.org/
https://www.auger.org/opendata/
https://www.auger.unam.mx/opendata/
https://www.auger.org.ar/
https://www.hawc-observatory.org/

