Study of Lambda polarization at the MPD

<u>Elizaveta Nazarova</u>¹

MexNICA Collaboration Winter Meeting

17.12.2020

¹ Joint Institute of Nuclear Research, Dubna, Russia

Outline

Introduction

- Lambda polarization
- > NICA/MPD experiment
- Analysis method
 - > Inclusive polarization
 - Global polarization
- Results
 - > Feasibility test of inclusive polarization extraction
 - Study of global hyperon polarization
- Conclusion

- Predicted¹ and observed² <u>global polarization</u> <u>signals rise</u> as the collision energy is reduced:
 - NICA energy range will provide new insight
 - Possible drop-off seen at $\sqrt{s_{NN}} = 2.4 \, \text{GeV}$ in HADES experiment³ (preliminary)
- New value of decay asymmetry α_{Λ} found in BES-III experiment⁴
 - > Effect could be studied at NICA
- $\Lambda(\bar{\Lambda})$ -splitting of global polarization, connection to the radial flow of $\Lambda(\bar{\Lambda})$

Possible drop-off at low energies?³

- ¹O. Rogachevsky, A. Sorin, O. Teryaev, Phys.Rev. C 82, 054910 (2010)
- ² J. Adam et al. (STAR Collaboration), Phys. Rev. C 98, 014910 (2018)
- ³ F. Kornas for the HADES Collaboration, SQM 2019, Bari, Italy (11.06.19)
- ⁴ Ablikim M, et al., Nature Phys. 15:631 (2019)

Motivation

- Preliminary result from HADES collaboration Q
 - Possible drop-off at low energy (1.23 AGeV)
 - > What we might see at NICA/MPD?
- Recent studies were done to estimate low-energy dependence of thermal vorticity using UrQMD¹ and 3FD² models
 - > If polarization is proportional to vorticity, might give an estimate
- ² Y. B. Ivanov, V. D. Toneev and A. A. Soldatov, Phys. Rev. C (2019) 100, 014908

¹Xian-Gai Deng, Xu-Guang Huang, Yu-Gang Ma,

$\Lambda(\bar{\Lambda})$ hyperon polarization

- Inclusive polarization^{3,4}
- * w.r.t scattering (production) plane
- > Measured in pp and pA collisions
- In HIC can be diluted due to the rescattering in the QCD medium

Spanned by beam direction and \vec{p}_{Λ}

- ¹Z. Liang, X. Wang, PRL 94, 102301 (2005)
- ²L. Adamczyk et al., Nature 548, 62 (2017)
- ³A. Lesnik et al., Phys. Rev. Lett. 35, 770 (1975)
- ⁴G. Bunce et al., PRL 36, 1113 (1976)

- Global polarization^{1,2}
- > w.r.t reaction plane
- Emerges in HIC due to the system angular momentum
- Sensitive to parity-odd characteristics of QCD medium and QCD anomalous transport

17.12.2020

Spanned by beam direction and \vec{b}

5/38

$\Lambda(\bar{\Lambda})$ hyperon polarization

- Inclusive polarization^{3,4}
- w.r.t scattering (production) plane
- Measured in pp and pA collisions
- In HIC can be diluted due to the rescattering in the QCD medium

- Global polarization^{1,2}
- > w.r.t reaction plane
- Emerges in HIC due to the system angular momentum
- Sensitive to parity-odd characteristics of QCD medium and QCD anomalous transport

$\Lambda(\bar{\Lambda})$ hyperon polarization

- PV primary vertex
- V_0 vertex of hyperon decay
- dca distance of closest approach
- path decay length
- In the case of global polarization one needs to calculate event plane and account for its resolution (R_{EP}^1):

$$\overline{P}_{\Lambda/\bar{\Lambda}} = \frac{8}{\pi\alpha} \frac{1}{R_{\rm EP}^1} \left\langle \sin(\Psi_{\rm EP}^1 - \phi_p^*) \right\rangle$$

• ϕ_p^* is the azimuthal angle of p

$$\frac{\mathrm{d}N}{\mathrm{d}\cos\theta^*} = 1 + \alpha_{\Lambda}P_{\Lambda}\cos\theta^*$$

- θ^* angle between the decay particle and $\vec{n} = \vec{p}_{\text{beam}} \times \vec{p}_{\Lambda}$
- P_{Λ} inclusive polarization (w.r.t. production plane of Λ)

NICA complex

- Beams: Luminosity:
 - > p (d) \rightarrow L = 10³² cm⁻²s⁻¹
 - → Au → L = 10^{27} cm⁻²s⁻¹

MPD detector

Multi-Purpose Detector (MPD)

 energy and system size scan from 4 to 11 GeV (HI beams) to measure a variety of signals

- 2π acceptance in azimuth
- 3-D tracking (TPC)
- Powerful PID (TPC, TOF, ECAL):
 - $\,\,$ $\,\,\pi/{
 m K}$ up to 1.5 GeV/c

 - ightarrow γ, e: 0.1 < p < 3 GeV/c
- High event rate
 - > Up to ~ 6 kHz

- <u>Stage I</u>:
 - TPC, TOF, ECAL, FHCAL, FFD
- <u>Stage II</u>:
 - IT (ITS) + EndCap (CPC, Straw, TOF, ECAL)

Analysis method

- Inclusive polarization
- Data: MC simulation using DCM-QGSM generator¹
 - > Au-Au, $\sqrt{s_{NN}} = 9$ GeV, ~100000 events, b=0 fm
 - > Inclusive Λ polarization (transverse to the scattering plane)
 - > DeGrand-Markkanen-Miettinen approach²
 - > No $\bar{\Lambda}$ polarization
- Track selection criteria:
 - \succ Number of TPC hits: $\rm N_{hits} > 10$
 - ≻ |η|<1.3

$$\begin{aligned} \mathbf{P} &= -\left(\frac{12p_T}{\Delta x_0 \mathbf{M}^2} \frac{1 - \xi(x)}{(1 + 3\xi(x))}\right)^2 \\ \xi(x) &= \frac{1 - x}{3} + 0.1x, \ x = p_\Lambda/p_{\text{beam}} \\ \mathbf{M}^2 &= \left[\frac{m_{\mathrm{D}}^2 + p_{\mathrm{TD}}^2}{1 - \xi(x)} + \frac{m_{\mathrm{s}}^2 + p_{\mathrm{Ts}}^2}{\xi(x)} - (m_\Lambda^2 + p_T^2)\right] \end{aligned}$$

¹V.D. Toneev, K.K. Gudima, Nucl. Phys. A 400, 173 (1983) ²T.A. Degrand, J. Markkanen, H.I. Miettinen, Phys. Rev. D: Part. Fields 32, 2445 (1985)

Analysis method

• Realistic Monte-Carlo simulation using DCM-QGSM generator (inclusive Λ polarization)

Simulation of polarization effects in the detector via GEANT 3 (anisotropic decay of Λ hyperons)
 — can be switched on/off to study the effect

• Event reconstruction using realistic PID within mpdroot framework

• $\Lambda(\bar{\Lambda})$ reconstruction through the weak decay channel ($\Lambda \to p + \pi^-$)

11/38

MPD PID for the analysis

17.12.2020

12/38

 $f(x) = [0] \exp\left(\frac{(-0.5(x-[1]))^2}{[2]^2}\right) + [3](L_0 + [4]L_1 + [5]L_2 + [6]L_3 + [7]L_4)$

Comparison of extracted angular distributions (from invariant mass) with the true distributions (for «polarized» and «non-polarized» case) \rightarrow shows detector acceptance effects

- Extracted (polarized case)
 Extracted (non-polarized case)
 Extracted (non-polarized case)
- True (polarized case) True (non-polarized case)

Study of Lambda polarization at the MPD

Dividing extracted angular distributions obtained from polarized/non-polarized case (with or w/o anisotropic decay)

> Accounts for the detector acceptance \rightarrow shows net effect due to polarization of Λ hyperons

$$\frac{\mathrm{d}N}{\mathrm{d}\cos\theta^*} = 1 + \alpha_{\Lambda}P_{\Lambda}\cos\theta^*$$

Study of global polarization

- <u>Data</u>: MC simulation using PHSD generator¹
 - > Au-Au, $\sqrt{s_{NN}} = 7.7$ GeV, ~1.5M MB events
 - > Global $\Lambda(\bar{\Lambda})$ polarization
 - > Thermodynamic (Becattini) approach²
- Track selection criteria for reconstruction:
 - \succ Number of TPC hits: $\rm N_{hits} > 10$
 - ≻ |η|<1.3

$$\overline{P}_{\Lambda/\bar{\Lambda}} = \frac{8}{\pi\alpha} \frac{1}{R_{\rm EP}^1} \left\langle \sin(\Psi_{\rm EP}^1 - \phi_p^*) \right\rangle$$

→ Need to calculate: $\Psi_{\rm EP}^1$ and $R_{\rm EP}^1$

¹W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3 ²F. Becattini, V. Chandra, L. Del Zanna, E. Grossi, Ann. Phys. 338 (2013) 32

Study of Lambda polarization at the MPD

PID performance for the dataset

Study of Lambda polarization at the MPD

- Adapting the technique developed in the flow group
 - https://git.jinr.ru/nica/mpdroot/-/tree/dev/macro/physical_analysis/Flow
- Centrality determination through TPC:
 - $|\eta| < 1.5$
 - $\succ 0 < p_{_T} < 3$
 - > DCA calibrations
 - > Track multiplicity in TPC \rightarrow centrality of the event

20/38

- Adapting the technique developed in the flow group
 - https://git.jinr.ru/nica/mpdroot/-/tree/dev/macro/physical_analysis/Flow
- Centrality determination through TPC:
 - $|\eta| < 1.5$
 - $> 0 < p_{_{\rm T}} < 3$
 - > DCA calibrations

Event with multiplicity $N_{tr} \pm \sigma_{N}$ have impact parameter in range of $b \pm \sigma_{b}$

> Track multiplicity in TPC \rightarrow centrality of the event

Division into 10-% centrality intervals

- 0 10 % 50 60 %
- 10 20 % 60 70 %
- 20 30 % 70 80 %
- 30 40 % 80 90 %
- 40 50 % • 90 100 %

- 30 40 %
 80 90 %
- 40 50 % 90 100 %

TPC Multiplicity in centrality classes

Elizaveta Nazarova

Impact parameter vs TPC centrality

- 0 10 % 50 60 %
- 10 20 % 60 70 %
- 20 30 %
 70 80 %
- 30 40 %
 80 90 %
- 40 50 %

Impact pararameter vs TPC

Event plane determination

- Event plane angle can be measured as:
 - $\Psi_{\text{EP}}^{n} = \arctan \frac{Q_{y}}{Q_{x}}$ $Q_{y} = \Sigma_{i} w_{i} \sin(n\phi_{i})$ $Q_{x} = \Sigma_{i} w_{i} \cos(n\phi_{i})$

$$\mathbf{w}_{i} = \begin{cases} -E_{i}, -p_{\mathrm{T}i} & \text{if } \eta < 0\\ E_{i}, p_{\mathrm{T}i} & \text{if } \eta > 0 \end{cases}$$

«-» appears only for 1st-order EP!

- Respectively, within the flow group implementation:
 - $\sim w_i = E_i / E_{\text{total}}$ (for the TPC Event plane)
 - > $w_i = p_{Ti}/p_{Ttotal}$ (for the FHCal Event plane)

• Event plane resolution can be calculated as:

- * $R_{\rm EP}^1 = \left\langle \cos(n(\Psi_{\rm EP}^1 \Psi_{\rm RP})) \right\rangle$ (w.r.t. reaction plane angle from the model)
- $R_{\rm EP}^1 = \left\langle \cos(n(\Psi_{\rm EP,R}^1 \Psi_{\rm EP,L}^1)) \right\rangle \text{ (sub-event resolution)} \longrightarrow$

► Can be used to estimate experimental resolution¹

¹A. M. Poskanzer , S. Voloshin Phys.Rev. C (1998) 58. pp. 1671–1678

Event plane determination (ZDC)

 $\Psi_{\rm FP}^2$ resolution (ZDC)

- Centrality is calculated via TPC multiplicity
- > Event Plane angle through FHCal
- > Dependence of resolution Rⁿ on TPC centrality is shown as TProfile

Need to estimate experimental resolution (using sub-event resolution)

Event plane determination (TPC)

- Centrality is calculated via TPC multiplicity
- > Event Plane angle through TPC
- > Dependence of resolution Rⁿ on TPC centrality is shown as TProfile
 - Need to estimate experimental resolution (using sub-event resolution)

- Feasibility test of inclusive polarization extraction within the framework of the MPD experiment
 - $\,{}^{\scriptscriptstyle \succ}$ Good sensitivity of the detector to inclusive Λ polarization
 - > Reasonable extraction of Λ -hyperons via the weak decay
- Outlook
 - \succ Study the technique in different regions of $\boldsymbol{p}_{T}\left(\boldsymbol{x}\right)$
 - \succ Properly account for secondary $\Lambda\text{-hyperons}$
 - Estimate dilution effects due to rescattering in the QCD medium

- Study of global hyperon polarization extraction within the framework of the MPD experiment
 - Adapted available technique from the flow group (centrality calculation via TPC, event plane determination via TPC & FHCal)
 - > Event plane resolution w.r.t. centrality from TPC
 - > Added PID reconstruction for $\bar{\Lambda}$ (needs to checked)
- Outlook
 - Further tests on the centrality and EP determination
 - Corrections for the EP angles
 - > Estimate of the experimental EP resolution (using sub-event EP)
 - > Add centrality determination through FHCal (possibly combined FHCal + TPC multiplicity)
 - Choose the best method to avoid possible correlations with the analysis

Thank you for your attention!

 $\Psi^* = \Psi + \sum_n \frac{2}{n} \left(-\left\langle \sin n\Psi \right\rangle \cos n\Psi + \left\langle \cos n\Psi \right\rangle \sin n\Psi \right)$

 Ψ_{EP}^{1} resolution (ZDC)

 Ψ^2_{EP} resolution (ZDC)

17.12.2020

 $\Psi_{\rm EP}^{\rm 1}$ resolution (TPC)

 $\Psi^2_{\rm EP}$ resolution (TPC)

17.12.2020

Polarization from PHSD model

- Mean value of the P_y component of the polarization vector from the PHSD model (MpdMCTrack)
- Should correspond to $P_J(P_J = -P_y)$
- Uncorrrected TPC centrality was used
- Seems to have correct dependence
- Need to finish the full-scale analysis for the final conclusion

Lambda MC per event

Anti-Lambda MC per event

Polarization from PHSD model

- Mean value of the P_y component of the polarization vector from the PHSD model (MpdMCTrack)
- Should correspond to $P_J(P_J = -P_y)$
- Uncorrrected TPC centrality was used
- Seems to have correct dependence
- Need to finish the full-scale analysis for the final conclusion

dN/dy for Lambda

dN/dy for Anti-Lambda

Analysis method

