Simulation studies for miniBeBe Implementation in MpdRoot and results

Pedro Antonio Nieto Marín MexNICA Collaboration

Table of contents

- miniBeBe monitoring detector purpose
- 2 miniBeBe characteristics
- 3 Implementation to MpdRoot Framework
- 4 Conceptual Design Report results
- 5 Work in progress

miniBeBe monitoring detector purpose

miniBeBe monitoring detector purpose

miniBeBe Characteristics

- **1** 16 strips, each one of length 60 cm with an array of 20 squared plastic scintillator cells with dimensions $20 \times 20 \times 3 \text{ } mm^3$.
- 2 320 squared plastic scintillator cells and 1,280 SiPMs covering an effective sensitive area of 128,000 *mm*².
- $|\eta| < 1.01$

V EX

Implementation to MPDRoot Framework

■ 950,000 Minimum Bias (b = 0 ~ 15.9 fm) events for Bi+Bi collisions at $\sqrt{s_{NN}}$ = 9 GeV and 950,000 events for p+p collisions at $\sqrt{s_{NN}}$ = 4, 9 and 11 GeV using UrQMD.

CDR Results

The conceptual design of the miniBeBe detector proposed for NICA-MPD

Ramón Acevedo Kado¹, Mauricio Alvarado Hernández¹, Alejandro Ayala^{1,2}, Marco Alberto Ayala-Torres³, Wolfgang Bietenholz¹, Dario Chaires⁴, Eleazar Cuautle¹, Isabel Domínguez⁵, Alejandro Guirado⁶, Ivonne Maldonado⁵, Julio Maldonado⁷, Eduardo Moreno-Barbosa⁸, P. A. Nieto-Marín⁵, Miguel Enrique Patiño Salazar¹, Lucio Rebolledo⁴, Mario Rodríguez-Cahuantzi⁸, D. Rodríguez-Figueroa⁹, Valeria Z. Reyna-Ortiz⁸, Guillermo Tejeda-Muñoz⁸, María Elena Tejeda-Yeomans⁴, Luis Valenzuela-Cázares⁶, and C. H. Zepeda Fernández^{8,10}

Accepted for publication in JINST: arXiv:2007.11790

- Energy deposited.
- 2 Time of flight.
- 3 Hits.
- 4 Trigger capabilities (Efficiency, multiplicity, time information and beam-gas).

Tracks

Figure: Geometry selection of the miniBeBe cells of tracks (Left). η distribution of all charged particles and primaries (Right).

Energy deposited

Figure: Identified particle distributions (Left). Strip-average of the energy deposited per cell for the miniBeBe in Bi+Bi at 9 GeV (Right).

Energy deposited

Figure: Scatter plot distribution of particles with respect to the energy they carry (Left). Energy deposited for the hits in the miniBeBe (Right).

Time of flight

Figure: Strip-average of the time-of-flight per cell for the miniBeBe in Bi+Bi at 9 GeV (Left). Time-of-flight scatter plot for the hits in the miniBeBe (Right).

Hits

MEX

UrQMD	⟨Hits⟩	strips	0-20%	80-100%
	per	16	0.2294 - 0.3248	0.0042 - 0.0047
Bi + Bi	cell	32	0.2294 - 0.3250	0.0041 - 0.0047
9 GeV	complete	16	73.40 - 103.94	1.34 - 1.50
	detector	32	146.81 - 208.03	2.65 - 3.01
UrQMD	⟨Hits⟩	strips	4 GeV	11 GeV
	per	16	0.00043 - 0.00055	0.00100 - 0.00122
p+p	cell	32	0.00042 - 0.00053	0.00099 - 0.00122
	complete	16	0.138 - 0.176	0.320 - 0.390
	detector	32	0.269 - 0.339	0.637 - 0.784

Table: Summary of average number of hits in miniBeBe.

Trigger capabilities (Efficiency)

Figure: MiniBeBe trigger efficiency as a function of the charged particle MEX multiplicity (top) and pseudo-rapidity (bottom).

Trigger capabilities (Efficiency)

Figure: Trigger efficiency as a function of the charged particle multiplicity for p+p collisions at $\sqrt{s_{NN}} = 9$ GeV for different detectors.

Trigger capabilities (Hits)

Figure: Number of charged particles that hit the miniBeBe vs. the generated number of charged particles (left). MiniBeBe multiplicity per centrality range. (right)

Trigger capabilities (Time information)

-Average hit time (average time).

-Time-of-flight of the first charged particle reaching miniBeBe (leading time).

- For z > 0, t_{right} .
- For z < 0, t_{left} .

So we want the root mean square (RMS) of the $\Delta t = t_{right} - t_{left}$.

Trigger capabilities (Time information)

Figure: RMS of the Δt distribution as a function of the impact parameter *b* of the collision.

Trigger capabilities (Time information)

$$VertexMbb = rac{t_{
m right} - t_{
m left}}{2} imes c.$$

Figure: Difference between the generated vertex and the vertex determ we with the leading time of the miniBeBe detector.

Trigger capabilities (Beam-gas)

Figure: The distribution of $t_{right} + t_{left}$. The sum of the leading time of the miniBeBe detector for z > 0 and z < 0 is shown for beam-beam and beam-gas generated events, 19 m from the interaction point.

Work in progress (Shadow studies)

Figure: BiBi@11GeV, 331000 events, SmearGaus XY 24cm, TPC Pt cut = 0.2

Work in progress (Shadow studies)

Figure: BiBi@11GeV, 331000 events, SmearGaus XY 24cm, TPC Pt cut = 0.2

Work in progress (New constructed geometry)

Backup

Figure 1: UrQMD Au+Au $\sqrt{s_{NN}}$ =11 GeV, miniBeBe: z=1.5m and r=5cm, BeBe pay, Ffd, smearing off

Figure 2: UrQMD Au+Au $\sqrt{s_{NN}}$ =11 GeV, miniBeBe: z=1.5m and r=15cm, BeBe pay, Ffd, smearing 60cm flat

Figure 3: UrQMD Bi+Bi $\sqrt{s_{NN}}$ =9 GeV, miniBeBe: z=1.5m and r=15cm, BeBe hexagons, Ffd, smearing off

Figure 4: UrQMD Bi+Bi $\sqrt{s_{NN}}$ =9 GeV, miniBeBe: z=1.5m and r=15cm, BeBe hexagons, Ffd, smearing 60cm flat

Figure 5: UrQMD C+C $\sqrt{s_{NN}}$ =9 GeV, miniBeBe: z=1.5m and r=15cm, BeBe hexagons, Ffd, smearing off

Figure 6: UrQMD C+C $\sqrt{s_{NN}}$ =9 GeV, miniBeBe: z=1.5m and r=15cm, BeBe hexagons, Ffd, smearing 60cm flat

Figure 7: UrQMD C+C $\sqrt{s_{NN}}$ =11 GeV, miniBeBe: z=1.5m and r=15cm, BeBe hexagons, Ffd, smearing off

Figure 8: UrQMD C+C $\sqrt{s_{NN}}$ =11 GeV, miniBeBe: z=1.5m and r=15cm, BeBe hexagons, Ffd, smearing 60 cm flat

Figure 9: UrQMD p+Bi $\sqrt{s_{NN}}$ =9 GeV, miniBeBe: z=1.5m and r=15cm, BeBe hexagons, Ffd, smearing off

Figure 10: UrQMD p+Bi $\sqrt{s_{NN}}$ =9 GeV, miniBeBe: z=1.5m and r=15cm, BeBe hexagons, Ffd, smearing 60 cm flat

Figure 11: UrQMD p+Bi $\sqrt{s_{NN}}$ =11 GeV, miniBeBe: z=1.5m and r=15cm, BeBe hexagons, Ffd, smearing off

Figure 12: UrQMD p+Bi $\sqrt{s_{NN}}$ =11 GeV, miniBeBe: z=1.5m and r=15cm, BeBe hexagons, Ffd, smearing 60 cm flat

Figure 13: UrQMD p+p $\sqrt{s_{NN}}$ =9 and 11 GeV, miniBeBe: z=1.5m and r=15cm, BeBe pay, Ffd, smearing off

Figure 14: UrQMD p+p $\sqrt{s_{NN}}$ =9 and 11 GeV, miniBeBe: z=1.5m and r=15cm, BeBe pay, Ffd, smearing 60cm flat