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Lattice QCD

• Lattice QCD is a succesful non-perturbative approach, but

µB > 0⇒ SQCD,E, e
−SQCD, E ∈ C .

• Reweighting: Absorb the imaginary part into the observable and
generate configurations with the real part.

• The sign problem
〈O〉 mostly cancellations ⇒ requires huge statistics ∝ ecV .

• The sign problem has prevented numerical simulations at finite
baryon density.
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QCD Phase Transition as Chiral Symmetry Breaking

Considering massless quark flavors

LE,QCD =
∑

f

(
ψ̄L,f /DψL,f + ψ̄R,f /DψR,f

)
+

1

4
Tr[GµνGµν ] ,

is invariant under
U(2)L ⊗ U(2)R = SU(2)L ⊗ SU(2)R ⊗ U(1)L=R ⊗ U(1)L 6=R

transformations

ψL,R =
1

2
(1± γ5)ψ, ψ̄L,R = ψ̄

1

2
(1∓ γ5).
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The Chiral Symmetry breaks spontaneously

SU(2)L ⊗ SU(2)R ' O(4)→ SU(2)L=R ' O(3) ,

which gives rise to 3 Nambu-Goldstone bosons (NGBs).
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Effective 2-flavor QCD Lagrangian

Leff =
F 2
π

4
Tr[∂µU

†∂µU] ,

where U ∈ SU(2)L ⊗ SU(2)R/SU(2)L=R = SU(2), and
Fπ = 92.4 MeV.

Equivalently, with fields ~e(x) ∈ S3

Leff =
F 2
π

2
∂µ~e(x) · ∂µ~e(x) ,

The 2-flavor QCD Lagrangian is a non-linear σ-model or O(4) model.
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The inclusion of quark masses

Since quarks have masses, chiral symmetry is approximate.

Mass term ∑
f

mf

(
Ψ̄fL(x)ΨfR(x) + Ψ̄fR(x)ΨfL(x)

)
For degenerate quark masses m, we have a symmetry under
simultaneous transformations in SU(2)L=R .
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In our effective theory, a magnetic field ~h breaks explicitly the O(4)
down to O(3)

Leff =
F 2
π

2
∂µ~e(x) · ∂µ~e(x)− ~h · ~e(x)

where ~e(x) ∈ S3.
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Dimensional reduction

We assume a 4-d volume of the form β × V , where β = 1/T is the
extent of Euclidean time, and V = L3.

The Euclidean action reads

SE[~e ] =

∫ β

0
dtE

∫
V
d3x

(
F 2
π

2
∂µ~e(x) · ∂µ~e(x)− ~h · ~e(x)

)
.

We consider the case of high temperature T = 1/β

SE[~e ] = β

∫
V
d3x

(
F 2
π

2
∂i~e(x) · ∂i~e(x)− ~h · ~e(x)

)
︸ ︷︷ ︸

H[~e ]

,

this simplification is known as dimensional reduction.
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The inclusion of µB

The topological charge takes the role of the baryon number (Skyrme
(1961)). In our effective theory

H[~e ] =

∫
V
d3x

(
F 2
π

2
∂µ~e(x) · ∂µ~e(x)− ~h · ~e(x)

)
− µBQ[~e ] .
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Lattice regularization

We regularize the path integral by means of the lattice regularization,
with lattice spacing a = 1.

The lattice Hamiltonian is written as

Hlat[~e ] = −F 2
πa
∑

x

∑
i

~ex+aı̂ · ~ex − µBQ[~e ]− a3~h ·
∑

x

~ex .

SE,lat[~e ] = βlatHlat[~e ]
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Considering massless quarks, simulations show βc,lat = 0.93590
Oevers (1996); Engels et al. (2003).

Identifying this value with the crossover temperature Tx = 155 MeV
Bhattacharya et al. (2014), we used the ratio βx/βc,lat to convert
µB,lat and hlat into physical units.

We need to estimate hlat realistically

hlat = h
β4

x

β4
c,lat

= h(145.1MeV)−4 .
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According to the Gell-Mann–Oakes–Renner relation

h = mqΣ = F 2
πM

2
π ≈(92.4MeV)2(138MeV)2

=(112.9MeV)4 = 1.626× 108 MeV4 .

Therefore

hlat ≈ 0.367.

This value corresponds to a quark mass of

mq =
F 2
πM

2
π

Σ
=

1.626× 108 MeV4

(250MeV)3
≈ 10.4MeV .

What matters is that we account for the correct pion mass.
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Monte Carlo Methods

Local update algorithms have problems, they suffer from critical
slowing down.

Critical slowing down means that near a critical point it becomes
exponentially hard for the simulation to generate statistically
independent configurations.

Cluster algorithms, such as the Wolff algorithm, suppress critical
slowing down.
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We use the 3-d O(4) model as an effective theory.

We monitor the temperature T = 1/β where the crossover takes
place, to explore the QCD phase diagram with two massive quark
flavors at finite baryon density.

This is done numerically using the Wolff algorithm that supressess
critical slowing down.
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Simulation parameters

• We simulated the lattice 3-d O(4) model with cubic volumes
V = L3 with periodic boundary conditions at hlat = 0.367,
µlat,B = {0, 0.2, . . . , 2} and several temperatures.

• We took 5× 104 measurements, separated by 10 multi-cluster
updates.

• We measured observables such as the energy density,
magnetization, topological charge, specific heat, magnetic
susceptibility, etc.
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Conclusions

• We used the 3-d O(4) model as an effective theory to study the
QCD phase diagram.

• An external magnetic field accounts for a denegenerate quark mass.

• We plotted the phase diagram to energies up to 250 MeV of the
chemical potential µB .

• A CEP was not observed in this range µB .
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Outlook

• Increase volumes.

• Explore higher µB .
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