Particle Identification with MPD-TPC tracks

MexNICA Collaboration Winter Meeting

Julio César Maldonado González December 16th, 2020

Facultad de Informática Culiacán - Universidad Autónoma de Sinaloa

- 1. Introduction
- 2. Reconstruction
- 3. Bayesian method
- 4. Data Science Techniques
- 5. Further work

- Particles are accelerated and collided at high energies.
- We can only see the information stored in the detectors translated into the form of tracks of the trajectories of the particles. [1]

This project will participate in the particle identification analysis used in the simulation and generation of events to study physics in heavy ion collisions for the Multi-Purpose Detector (MPD) experiment of the Nuclotron Ion Collider fAcility (NICA) at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia.

Figure 1: MPD sub-detectors at NICA. [3]

- In the experimental high energies physics, it is essential to identify the type of particle that occurs in the Particle Identification (PID) experiment.
- These identification techniques depend on the properties or observables that are obtained from the experiment. [2]
- From reconstruction on the tracks of the particles, you can get the momentum, energy loss, and other features of the particles as they pass through the TPC detector.
- MPD tracks features could be used as input data for machine learning techniques like GLMs models.
- Statistical methods (Bayesian approach) results could be compare with results obtained by machine learning.

Reconstruction

- The **event reconstruction** consists in finding particles tracks using the Kalman filter technique. [3]
- The **physics analysis** consists in finding the PID from observable signals from detectors through reconstruction data.

Reconstruction

A brief example of a MPDROOT macro to read reconstruction files:

Data for simulation and reconstruction

- Detector: MPD (TPC)
- Input file: reconstruction.root file (DST)
- Event generator: UrQMD
- Bi-Bi a 11 GeV (MB)
- Number of events: 10k
- Macro base: CompareSpectra.C, anaDST.C

Cuts suggested in the TPC documentation [7]

- Eta cut $(\eta < 1.2)$
- P_T cut $(1.0 > P_T > 0.1)$
- Primary and secondary particles ($MotherID \le 0$, MotherID > 0)

Bayesian method

The probability of a particle i, if a signal s is observed,

$$\omega(i|s) = \frac{r(s|i)C_i}{\sum_k r(s|k)C_k}$$

- r(s|i) Conditional probability density function of the signal observed s of a detector, if a particle i(e,μ,π,K,p,...)is detected. It reflects properties of the detector.
- *C_i* is the probability of finding a particle type in the detector (frequency). It does not depend on the detector.

Using the TPC, s is the signal dE/dx assigned to each track from the reconstruction.

Figure 2: dE/dx from TPC for 10k events taking the momentum range of 0.28 to 0.32 GeV/c in [6] for primary and secondary particles.

Fit and probability density function

Using a Gaussian probability density func- Obtaining the result: tion to fit data, • FCN = 68.3756

$$r(s|\pi) = A \exp\left(-\frac{(s-\mu)^2}{2\sigma^2}\right)$$

- Constant A = 1.84022e + 03. ERROR = 1.17648e + 01
- Mean $\mu = 3.13593e + 03$, ERROR = 3.19178e + 00
- Sigma $\sigma = 2.00574e + 02.$ ERROR = 1.67078e + 00

Probabilities a priori C_i

The probabilities C_i can be estimated with Time-of-Flight measurements,

$$m = \frac{p}{\beta\gamma} = p \sqrt{\frac{c^2 t^2}{l^2} - 1}$$

Figure 3: M^2 TOF for 10k events for primary particles.

Taking each peak in an histogram, we have $C_p = 741$ and $C_{\pi} = 175$

Data Science Techniques

In high-energy physics, statistical techniques are traditionally used to determine a mathematical function f(x).

In machine learning we have the approximate function f(x, w) from a test data set, $\{x, y\}$, with x the feature vector, and y the relation between those features.

We seek to obtain the model parameters \mathbf{w} .

In a generalized linear model, the response y_i ,

$$y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_p x_{pi} + \epsilon_i$$

with variables x_i and an error term ϵ_i .

GLMs can be applied with R using the function glm,

$$y \sim x1 + x2$$

- y is the response (type of particle: "proton particule" or "pion particles").
- x1,x2 are numeric feature vectors (momentum "P" and energy deposition "dEdx".)

Generalized Linear Model (GLM)

We use a data set for training (defining parameters model) with two classes: pions (211) and protons (2212).

Р	dEd×	PDGID
0.377411	2782.666	211
0.633236	2715.193	211
0.404283	2710.947	211
0.749252	3044.496	211
0.423279	13775.852	2212
0.353684	2907.477	211

Generalized Linear Model (GLM)

Coefficients:

	Estimate	Std. Error
(Intercept)	-7.51945	12.06997
dEdx	0.00377	0.00365
Р	8.06809	9.61674

The discriminant function can be write as follow,

y = -7.51954 + (0.00377)dEdx + (8.06809)P

A test data element is defined as followed, obtaining a probability from 0 to 1 for both classes (protons (0) and pions(1)),

newdata = data.frame(P = 0.377411, dEdx = 2782.666)
predict(model, newdata, type="response")

Further work

- Implement r(s|i) probability density functions and C_i obtain from histograms to calculate bayesian conditional probability ω(i|s).
- Compare with GLM model results implementing in R for a binomial class data set.
- Expand GLM model to a more complex model made by several GLM individual models.
- Using larger data set made from larger numbers of events for protons, pions, kaons and electrons.

References

- C. Lippmann (2011) Particle identification. Nucl. Instrum. Meth., vol. A666, pp. 148–172, 2012.
 DOI:10.1016/j.nima.2011.03.009.
- [2] E. Garutti, Particle Identification (PID). Distinguishing particle types http://www.desy.de/ garutti/LECTURES/ParticleDetectorSS12/
- [3] O. Rogachevsky (2020) Purposes of the MpdRoot framework MPD EXPERIMENT http://mpd.jinr.ru/mpdroot-start-guide/
- [4] Dryablov, D., Gudima, K., Kapishin, M., Litvinenko, E., Musulmanbekov, G., Zheger, V. (2013). Event Centrality Determination and Reaction Plane Reconstruction at MPD.
- [5] Kryshen, E. Ivanishchev, D Kotov, Dmitry Malaev, M Riabov, V Ryabov, Yu. (2019). Study of neutral meson production with photon conversions in the MPD experiment at NICA. Journal of Physics: Conference Series. 1400. 055055. 10.1088/1742-6596/1400/5/055055.
- [6] Mudrokh, Alexander. (2019). Prospects for the study of

event-by-event fluctuations at MPD/NICA project. EPJ Web of Conferences. 204. 07014. 10.1051/epjconf/201920407014.

[7] A. Averyanov et al. (2017). TPC status for MPD experiment of NICA project. JINST 12 C06047