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Introduction



Introduction

• Particles are accelerated and collided at high energies.
• We can only see the information stored in the detectors translated

into the form of tracks of the trajectories of the particles. [1]



Introduction

This project will participate in the particle identification analysis used in
the simulation and generation of events to study physics in heavy ion
collisions for the Multi-Purpose Detector (MPD) experiment of the
Nuclotron Ion Collider fAcility (NICA) at the Joint Institute for Nuclear
Research (JINR) in Dubna, Russia.

Figure 1: MPD sub-detectors at NICA. [3]



Introduction

• In the experimental high energies physics, it is essential to identify
the type of particle that occurs in the Particle Identification (PID)
experiment.

• These identification techniques depend on the properties or
observables that are obtained from the experiment. [2]

• From reconstruction on the tracks of the particles, you can get the
momentum, energy loss, and other features of the particles as they
pass through the TPC detector.

• MPD tracks features could be used as input data for machine
learning techniques like GLMs models.

• Statistical methods (Bayesian approach) results could be compare
with results obtained by machine learning.



Reconstruction



Reconstruction

• The event reconstruction consists in finding particles tracks using
the Kalman filter technique. [3]

• The physics analysis consists in finding the PID from observable
signals from detectors through reconstruction data.



Reconstruction

A brief example of a MPDROOT macro to read reconstruction files:



Data for simulation and reconstruction

• Detector: MPD (TPC)

• Input file: reconstruction.root file (DST)

• Event generator: UrQMD

• Bi-Bi a 11 GeV (MB)

• Number of events: 10k

• Macro base: CompareSpectra.C, anaDST.C

Cuts suggested in the TPC documentation [7]

• Eta cut (η< 1.2)

• PT cut (1.0>PT > 0.1)

• Primary and secondary particles (MotherID ≤ 0, MotherID > 0 )



Bayesian method



Bayesian method

The probability of a particle i , if a signal s is observed,

ω(i |s) =
r(s |i)Ci

∑

k r(s |k)Ck

• r(s |i) Conditional probability density function of the signal observed
s of a detector, if a particle i(e,µ,π,K ,p, ...)is detected. It reflects
properties of the detector.

• Ci is the probability of finding a particle type in the detector
(frequency). It does not depend on the detector.



Probability density functions

Using the TPC, s is the signal dE/dx assigned to each track from the
reconstruction.
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Figure 2: dE/dx from TPC for 10k events taking the momentum range of
0.28 to 0.32 GeV/c in [6] for primary and secondary particles.



Fit and probability density function

Using a Gaussian probability density func-
tion to fit data,

r(s |π) =Aexp
�

−
(s −µ)2

2σ2

�
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Obtaining the result:

• FCN = 68.3756

• Constant
A= 1.84022e+03,
ERROR = 1.17648e+01

• Mean
µ= 3.13593e+03,
ERROR = 3.19178e+00

• Sigma
σ= 2.00574e+02,
ERROR = 1.67078e+00



Probabilities a priori Ci

The probabilities Ci can be estimated with Time-of-Flight measurements,

m=
p

βγ
= p
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Figure 3: M2 TOF for 10k events for primary particles.



Probabilities a priori Ci

Taking each peak in an histogram, we have Cp = 741 and Cπ= 175
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Data Science Techniques



Classification models

In high-energy physics, statistical techniques are traditionally used to
determine a mathematical function f (x).

In machine learning we have the approximate function f (x ,w) from a test
data set, {x ,y}, with x the feature vector, and y the relation between
those features.

We seek to obtain the model parameters w.



Generalized Linear Model (GLM)

In a generalized linear model, the response yi ,

yi = β0+β1x1i + ...+βpxpi + εi

with variables xj and an error term εi .

GLMs can be applied with R using the function glm,

y ∼ x1+ x2

• y is the response (type of particle: "proton particule" or "pion
particles").

• x1,x2 are numeric feature vectors (momentum "P" and energy
deposition "dEdx".)



Generalized Linear Model (GLM)



Generalized Linear Model (GLM)

We use a data set for training (defining parameters model) with two
classes: pions (211) and protons (2212).

P dEdx PDGID
0.377411 2782.666 211
0.633236 2715.193 211
0.404283 2710.947 211
0.749252 3044.496 211
0.423279 13775.852 2212
0.353684 2907.477 211



Generalized Linear Model (GLM)

Coefficients:

Estimate Std. Error
(Intercept) -7.51945 12.06997

dEdx 0.00377 0.00365
P 8.06809 9.61674

The discriminant function can be write as follow,

y =−7.51954+(0.00377)dEdx+(8.06809)P

A test data element is defined as followed, obtaining a probability from 0
to 1 for both classes (protons (0) and pions(1)),

newdata = data.frame(P = 0.377411, dEdx = 2782.666)
predict(model, newdata, type="response")



Further work



Further work

• Implement r(s |i) probability density functions and Ci obtain from
histograms to calculate bayesian conditional probability ω(i |s).

• Compare with GLM model results implementing in R for a binomial
class data set.

• Expand GLM model to a more complex model made by several GLM
individual models.

• Using larger data set made from larger numbers of events for
protons, pions, kaons and electrons.
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