

Facultad de Ciencias Físico-Matemáticas Universidad Autónoma de Sinaloa

Hadron production at RHIC energies towards polarization studies using Therminator.

L.F. José Jorge Medina Serna December 16th 2020

Abstract

In this talk we report on a calculation for particle hadronization after heavy ion collisions using both the Siemens-Rassmusen and the Schnederman-Sollfrank-Heinz freeze-out models. We compare the transverse momentum spectra of pions and protons using these models with RHIC data. Furthermore, we use Therminator generator to simulate Au+Au collisions at 200 GeV, and also we compare with RHIC data. We highlight the different freeze-out models and lay the road ahead for future polarization studies using Therminator. Therminator (THERMal heavy-IoN generATOR) is a Monte Carlo event-generating program designed for the study of particle production in heavy ion collisions. The program implements thermal models of particle production with single freeze-out:

- Cracow single freeze-out
- Blast wave model

Therminator is controlled by the following parameters

- NumberOfEvents
- Randomize
- InputDirShare
- EventOutputFile
- FreezeOutModel
- BWVt
- Tau, RhoMax
- Temperature, Miul, MiuS, MiusB
- AlphaRange, RapidityRange
- NumberOfIntegrateSamples

A run in Therminator for Au+Au ions at $\sqrt{s_{NN}} = 200$ Gev with the following parameters:

NumberOfEvents	2000
Randomize	1
FreezeOutModel	SingleFreezeOut
Tau	9.74 fm
RohMax	7.74 fm
Temperature	0.1656 GeV
Miul	-0.0009 GeV
MiuS	0.0069 Gev
MiuB	0.0285 Gev
AlphaRange	8.0
RapidityRange	4.0

Table: Parameters for the Therminator simulation for Au+Au at $\sqrt{s_{NN}}$ GeV

Transverse momentum distribution for π^+ |y|<0.5

Figure: Comparison of the transverse momentum distribution at |y| < 0.5 for the π^+ obtained in Therminator with parameters showed in 1 for the Cracow single freeze-out model with 1000 events with the data reported (Phys. Rev. Lett. 97, 152301).

Transverse momentum distribution for $\pi^{-}a |y| < 0.5$

Figure: Comparison of the transverse momentum distribution at |y| < 0.5 for the π^- obtained in Therminator with parameters showed in 1 for the Cracow single freeze-out model with 1000 events with the data reported (Phys. Rev. Lett. 97, 152301).

Transverse momentu spectra for $p^+ |y| < 0.5$

Figure: Comparison of the transverse momentum distribution at |y| < 0.5 for *p* obtained in Therminator with parameters showed in 1 for the Cracow single freeze-out model with 1000 events with data reported (Phys. Rev. Lett. 97, 152301).

Transverse momentu distribution $\overline{p} |y| < 0.5$

Figure: Comparison of the transverse momentum distribution at |y| < 0.5 for \bar{p} obtained in Therminator with parameters showed in 1 for the Cracow single freeze-out model with 1000 events with data reported (Phys. Rev. Lett. 97, 152301).

9/24

Transverse momentum distribution for $\Lambda |y| < 1$

Figure: Comparison of the transverse moment distribution at |y| < 1 for Λ obtained in Therminator with parameters showed in 1 for the Cracow single freeze-out model with 1000 events with the data reported (Phys. Rev. Lett. 98, 062301)

10/24

Transverse momentum distribution for $\overline{\Lambda} |y| < 1$

Figure: Comparison of the transverse moment distribution at |y| < 1 for $\overline{\Lambda}$ obtained in Therminator with parameters showed in 1 for the Cracow single freeze-out model with 1000 events with the data reported (Phys. Rev. Lett. 98, 062301)

The main goal of this work is to implement a polarization mechanism in therminator. In order to achieve it , the first step is studying freeze-out conditions used in the program. In this way, the freeze-out conditions that will be discussed are

- Siemens-Rassmusen model
- Schnedermann-Sollfrank-Heinz model

Freeze-Out model

Figure: cartoon depicting the space-time history of the QGP asgenerated in a heavy ion collision at LHC energies. The overlay on the right showsthe lab-frame evolution (Acta Physica Polonica B, vol. 45, no. 12, p. 2355, 2014)

For an energy $E = \sqrt{m^2 + p^2}$, Cooper-Frye formula give us the particle distribution through an freeze-out hypersurface, that we call $d\Sigma_{\mu}$.

$$\Xi \frac{dN}{d^3p} = \int d\Sigma_{\mu} p^{\mu} f(x, p) \tag{1}$$

With p^{μ} the four-moment and f(x, p) the probability distribution. The hypersurface differential is

$$d\Sigma_{\mu} = \varepsilon_{\mu\alpha\beta\gamma} \frac{dx}{d\alpha} \frac{dx}{d\beta} \frac{dx}{d\gamma} d\alpha d\beta d\gamma$$
(2)

Where $\varepsilon_{\mu\alpha\beta\gamma}$ is the four rank Levi-Civita tensor and α , β , γ are the parameters which define the hypersurface.

Calculations for Siemens-Rassmusen model

An usual parametrization for spherical hypersurfaces is

$$x^{\mu} = (t(\zeta), r(\zeta) \cos \phi \sin \theta, r(\zeta) \sin \theta \sin \phi, r(\zeta) \cos \theta)$$
(3)

Figure: Parameterization of the freeze-out hypersurface. Part (a) shows the view in the x-y plane with a fixed value of ζ . Part (b) represents the view in the τ -r plane with a fixed value of ϕ (Phenomenology of ultra-relativistic heavy-ion collisions, World Scientific Publishing Company).

Assuming that the freeze-out curve in the t-r plane satisfies

$$dt = v dr, \quad t = t_0 + v t \tag{4}$$

Figure: The time-like freeze-out curve assumed in the Siemens Rasmussen model represented by the solid line (Phenomenology of ultra-relativistic heavy-ion collisions, World Scientific Publishing Company).

With these two equations and assuming a Boltzmann distribution, is possible to write

$$E\frac{dN}{d^{3}P} = \frac{e^{-(\gamma E - \mu)/T}}{2\pi^{2}} \left[E\frac{\sinh(a)}{a} + T\frac{(\sinh a - a\cosh a)}{a\gamma}\right] \times \int_{0}^{1} r' r^{2}(\zeta) d\zeta$$
(5)

Just is need to solve

$$\int_{0}^{1} r' r^{2}(\zeta) d\zeta = \int_{0}^{r_{max}} r^{2} dr = \frac{r_{max}^{3}}{3}$$
(6)

where *a* is an adimensional parameter defined as $a = \frac{\gamma v p}{T}$ and r_{max} denotes the maximum radio of the system, which can be associated to the volume

$$V = \frac{4}{3}\pi r_{max}^3 \tag{7}$$

17 / 24

The Schnederman-Sollfrank-Heinz model takes a boost invariant cylindrical hypersurface. Such hypersurface is defined with these three parameters: the azimuthal angle ϕ , the spacetime rapidity η_{\parallel} and the ζ parameter which defines the curve $\tau - \rho$.

$$x^{\mu} = (\tau(\zeta) \cosh \eta_{\parallel}, \rho(\zeta) \cos \phi, \rho(\zeta) \sin \phi, \tau(\zeta) \sinh \eta_{\parallel})$$
(8)

Then

$$d\Sigma^{\mu} = (\rho' \cosh \eta_{\parallel}, \tau' \cos \phi, \tau' \sin \phi, \rho' \sinh \eta_{\parallel})$$
(9)

As before, the prime denotes the derivative respect to ζ .

In analogy to the Siemens-Rassmusen model, the $\tau-\rho$ plane curve is assumed constant

(10)

19/24

Figure: The freeze-out curve assumed in this model (Phenomenology of ultra-relativistic heavy-ion collisions, World Scientific Publishing Company)

Also, assuming a Boltzmann distribution Then equation (1) becomes

$$\frac{dN}{dyd^2p_{\perp}} = \frac{e^{\mu/T}}{4\pi^2} \tau_f \rho_{max}^2 m_{\perp} K_1 [\frac{m_{\perp}}{T\sqrt{1-v_{\perp}^2}}] I_0 [\frac{p_{\perp}v_{\perp}}{T\sqrt{1-v_{\perp}^2}}] \quad (11)$$

Where K_0 and I_1 are the modified Bessel function of first and second kind and v_{\perp} is the transverse velocity.

Figure: Comparison of the transverse momentum spectra for π^+ between Siemens-Rassmusen spherical model and Schnedermann-Sollfrank-Heinz cylindrical model using the parameters showed in table 1 with STAR data (Phys. Rev. Lett. 97, 152301).

Figure: Comparison of the transverse momentum spectra for p between Siemens-Rassmusen spherical model and Schnedermann-Sollfrank-Heinz cylindrical model using the parameters showed in table 1 with STAR data (Phys. Rev. Lett. 97, 152301). Several freeze-out parameterizations have been discussed. Schnedermann-Sollfrank-Heinz model showed a boost invariance, what makes it a good model to describe the hadronization after heavy-ions collisions. For studying these models, Therminator is a good tool capable to realize calculations for transverse momentum distribution.

- Studying polarization mechanism in heavy-ion collisions
- Include a polarization term in the freeze-out models
- Modify Therminator for including this polarization therm