

Test of high-energy hadronic interaction models using the KASCADE-Grande data.

2020 MEETING OF THE COSMIC RAY DIVISION OF THE MEXICAN PHYSICAL SOCIETY

David Rivera Rangel. IFM-UMSNH

Dr. Juan Carlos Arteaga Velázquez, JEM-UMSNH

Test of hadronic models David R. R.

000

Motivation

J. Bauer. Prospects for the Observation of Electroweak Top Quark Production with the CMS Experiment

> Soft Region $|q^2| \sim p_t^2 < Q_0^2, \ Q_0^2 \sim 1 \,\text{GeV}^2$ Hard Region $|q^2| \gg Q^2$

Development of the Extended Air Showers and the interactions of the particles with atmosphere are described by fenomenological models which are based on colliders data.

Indico.cern.ch/D.Gora

Motivation

26/11/20

Test of hadronic models David R. R.

Motivation

KASCADE-Grande

- Discrepancies between hadronic models and experimental data on the muon densities and muon attenuation length.
- Study using muon densities, number of muons and reconstructed energy.

26/11/20

KASCADE-Grande experiment

h

KASCADE Experiment

Karlsruhe Shower Core Array Detector

Grande Station

13 m

Electronic Station

Array Cluster e/y+µ

Area: 200x200 m²

→ 252 e/y detectors (scintillator)

www.iap.kit.edu/kascade

- → 192 detectors µ (Shielded).
- → Central Detector.
- Calorimeter.
- Muon Tracking detector.
 Observables:
- → N_e , N_μ , $N_{hadrones}$ E=10¹⁴-10¹⁷ eV

Grande Array

Charged particles and Muons

The number of muons has to be estimated

The total number of muons N in the shower disk is derived from a maximum likelihood estimation Assuming the locally muons detected by KASCADE To fluctuate according to a Poisson distribution.

$$N_{\mu}^{\text{rec}} = \sum_{i=1}^{k} n_i / \sum_{i=1}^{k} (f(r_i)A_i \cdot \cos(\theta))$$

- n, is the number of particles measured in one muon detector.
- \cdot r_i is the core distance.
- \cdot A, is the Sensitive area of the detector.
- f(r) is a lateral distribution function based on the Proposed by Lagutin.

$$f(r) = \frac{0.28}{r_0^2} \left(\frac{r}{r_0}\right)^{p_1} \left(1 + \frac{r}{r_0}\right)^{p_2} \left(1 + \left(\frac{r}{10 \cdot r_0}\right)^2\right)^{p_3}$$

 $\left(1+\frac{r}{r}\right)^{p_2}\left(1+\left(\frac{r}{10-r}\right)^2\right)^{-1}$

W.D. Apel, et al., Nuclear instruments in physics Research. A. 620 (2010).

The parameters: p_1 =-0.69, p_2 =-2.39, p_3 =-1.0 r_0 =320 m were based on CORSIKA simulations

Lateral distribution $\rho_{\mu}(r) = N_{\mu}f(r)$

Quality Cuts

- → Fiducial Area
- Cuts on the direction of arrival angle (Compare similar data sets)
 - Acceptance 656.902 m²*sr
 - → Exposure 8.1389 m²*sr*s
 - Angle division into three intervals of equal acceptance.
 - → [0°,21.78°]
 - → [21.78°, 31.66°]
 - → [31.66°, 40°]
- → Cuts over the number of charged particles:
 - It is reconstructed from the number of charged particles
 - The charged particle range is subdivided depending on the zenith angle
- → Cuts over the trigger.
 - All the stations in the cluster detects particles.

Maximum detector efficiency. ¡Reducing the systematic error!

Quality Cuts

Hadronic interaction models tests

 The experimental results are compared with the predictions of the models for H and Fe primaries.

Hadronic interaction models tests

CORSIKA

CORSIKA v770

GEANT 4

FLUKA

Threshold: 230 MeV

Spectrum index: -3

Isotropic and homogeneous distribution

POST-LHC QGSJET-II-04 EPOS LHC SIBYLL 2.3 SIBYLL 2.3c

- ★ Calibrated with LHC data.
- ★ A bigger number of muons than the prediction of QGSJET-II-02 is generated.
- No lineal and nuclear effects are considered.

Density tests

- \cdot n is the number of particles measured in one muon detector.
- \cdot A_i is the Sensitive area of the detector.
- \cdot r_i is the core distance.

Electron density data

Test of hadronic models David R. R.

Electron density data

Electron density data

Test of hadronic models David R. R.

Muon density data

Muon density data

Muon density data

Conclusions and final remarks

- The electron densities seem to be well described by the hadronic models at different energies.
- The muonic component otherwise shows discrepancies between the data and the predictions.
- In the muonic sector the data shown a stepper behavior on the curve for the most energetic events.
- The EPOS-LHC model shows the most evident discrepancies in the muon sector for the EeV events. However, all the models present this behavior for EeV and vertical events.