

2020 Meeting of the Cosmic Ray Division of the Mexican Physical Society 23-26 November, 2020

Prospects for LIV test with CTA

The CTA Consortium ¹ Represented by Humberto Martínez-Huerta ²

¹See https://www.cta-observatory.org/consortium_authors/authors_2020_10.html ² IFSC-USP / FCFM-UNACH

Astroparticle Physics

The Array Locations

CTA Consortium

Three major study themes

CTA science program: https://arxiv.org/abs/ 1709.07997

Understanding

The origin and role of relativistic cosmic particles

- Accelerate
- Propagate
- ...

Probing

Extreme environments

- Neutron Stars
- Black Holes
- Relativistic Jets
- ...

Exploring

Frontiers in Physics

- Fundamental physics
 - Lorentz Invariance

Violation

- Dark Matter
- Axions

• ...

7

generalize to some point the search of LIV-signatures.

Two possible scenarios

* Finding LIV signal

Input LIV simulations and find CTA detection.

* Excluding LIV signal

Input LI simulations and find CTA LIV rejection.

Two possible scenarios

* Finding LIV signal

Input LIV simulations and find CTA detection.

* Excluding LIV signal

Input LI simulations and find CTA LIV rejection.

1. LIV- Simulation

2. Find the best **Fit**-LIV

3. Find the best **Fit**-LI

4. LIV signal significance

1. LIV- Simulation

2. Find the best **Fit**-LI

3. Find the best **Fit**-LIV

4. LIV signal significance

Free parameters

 $N_0 [TeV^{-1} cm^2 s^{-1}]$

Index

Ec [TeV]

1. LIV- Simulation

2. Find the best **Fit**-LI

3. Find the best **Fit**-LIV

4. LIV signal significance

Energy [TeV]

13

1. LIV- Simulation

2. Find the best **Fit**-LI

3. Find the best **Fit**-LIV

4. LIV signal significance

Src - cases	
* Mrk501	
- 50 TeV EcPL: Case 1	
- 10 TeV EcPL: Case 2	
* 1ES 0229+200	×
- 50 TeV EcPL: Case 3	
- 10 TeV EcPL: Case 4	

×

Gammapy Gamma-ray astronomy Python tools

15

- 1. LIV- Simulation
- 2. Find the best **Fit**-LI

- 3. Find the best **Fit**-LIV
- 4. LIV signal significance

Two possible scenarios

* Finding LIV signal

Input LIV simulations and find CTA detection.

* Excluding LIV signal

Input LI simulations and find CTA LIV rejection.

1. LI- Simulation

Different step from the previous scenario

2. Find the best **Fit**-LI

3. Find the best **Fit**-LIV

4. Exclusion significance 3 σ 2 σ 5 σ Different step from the previous scenario

19

- 1. LIV- Simulation
- 2. Find the best **Fit**-LI
- 3. Find the best **Fit**-LIV
- 4. Exclusion significance

Simulation of 1ES0229+200 with $E_{cut} = 50$ TeV and LI propagation.

The LIV models excluded at 2 σ for n = 1 and 2 are also shown for comparison

Confidence level for the rejection of LIV energy scales for n=1 and n=2,

including the EBL systematic error

- CTA shows competitive sensitivity limits using a single source analysis.
- Better confidence levels are marked with darker colors.
- Systematic errors are shown in black for the 2σ limit.

- CTA shows competitive sensitivity limits using a single source analysis.
- Better confidence levels are marked with darker colors.
- Systematic errors are shown in black for the 2σ limit.

Strong LIV Exclusion limits in the photon sector by astroparticle tests

Pair production threshold shifts (PP)

Testing the frontiers of physics with CTA

Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation CTA Consortium. (arXiv:2010.01349)

Gamma rays produce electron-positron pairs when interacting with EBL photons

https://www.cta-observatory.org/what-propogation-ofenergetic-light-can-tell-us/

Exotic processes such as LIV or coupling to axion-like particles could modify the absorption, resulting in characteristic spectral features.

 10^{-8} 10^{-7} 10^{-6} 10^{-5} 10^{-4}

 $m_a~({
m eV})$

10^{-12} 10^{-11} 10^{-10} 10^{-9}

- We have used the optical depth with a generic LIV deformation of the free particle dispersion relation to study CTA's potential to find LIV phenomena and place limits on the LIV energy scale.
- In this analysis, we found that
 - CTA has the potential to discriminate LIV signal from LI
 - If there is not LIV, stringent limits to the LIV energy scale can be established due to CTA capability, even using a single source analysis, that are <u>a factor of two to three more</u> <u>restrictive</u> than those obtained by current instruments using the same search channel.

UN CONSOL RAND INCOMES CONSOL FOR