

Estudio de fuentes de rayos gamma ultra energéticos detectados por HAWC con redes neuronales

> Indira Angie García Téllez (BUAP) Dr. Tomás Capistrán Rojas (IA-UNAM) Dr. Ibrahim Torres (INAOE)

> > División de Rayos Cósmicos

Noviembre 2020

Introducción

Existe una estructura llamada "rodilla" en el espectro de rayos cósmicos (CR) de todas las partículas, a ~ 1 PeV.

Se espera que los CR sean de origen galáctico al menos hasta este punto.

Para entender ésto, se buscan las fuentes que pueden acelerar las partículas a esta energía (PeVatrones), como:

- Remanentes de supernova (SNRs).
- Cúmulos de estrellas masivas jóvenes.
- Agujeros negros supermasivos.

Introducción

Se hace uso de los rayos gamma en lugar de los rayos cósmicos.

Una fuente con un espectro de rayos gamma duro que se extiende a 100 TeV sin un corte espectral aparente sería una firma clara de un PeVatron. Pretz, J., (2015). PoS. ICRC2015,(025).

< □ > < 同 > < 三 > < 三 >

Método de análisis

- En HAWC, se han desarrolado dos estimadores de energía, gran parámetro y redes neuronales.
- La colaboración de HAWC cuenta con un paper sobre fuentes de rayos gamma ultra energéticos usando gran parámetro.
- El análisis consta de tres pasos principales:

• En este trabajo se usó el método de redes neuronales.

A.U. Abeysekara, et al., (2019). APJ, 881(2), 134. A.U. Abeysekara, et al., (2020). PRL, 124(2), 021102.

A (10) < A (10) < A (10) </p>

Método de análisis

- Los datos usados fueron colectados de junio 2015 a diciembre 2017 (837.2 días)
- Para hacer los mapas \sqrt{TS} (\hat{E} : 56 TeV y 100 TeV) se usó la separación gamma/hadrones, el binning de eventos y el criterio de maximum likelihood.

Bin	Low energy (TeV)	High energy (TeV)
a	0.316	0.562
b	0.562	1.00
c	1.00	1.78
d	1.78	3.16
е	3.16	5.62
f	5.62	10.0
g	10.0	17.8
h	17.8	31.6
i	31.6	56.2
j	56.2	100
k	100	177
1	177	316

Bines de energía

A.U. Abeysekara, et al., (2019). APJ, 881(2), 134.

Método de análisis

- Se obtiene la ubicación y extención definitiva de la fuente ajustando simultaneamente:
 - ascención recta (RA)
 - declinación (Dec)
 - extensión
- Los ajustes espectrales se realizan con la técnica binned-likelihood forward-folding que tiene en cuenta:
 - la respuesta angular del detector
 - Ios sesgos
 - la resolución energética del estimador de energía.

Para el ajuste espectral:

- No se consideraron modelos de múltiples fuentes.
- Se ajustó el espectro en la región de interés $(r = 3^{\circ})$.
- Se asumió una emisión en forma de Gauss.
- Las contribuciones de emisiones difusas y/o fuentes no resueltas no se separaron.

Fuentes que emiten por encima de 56 TeV. Asumiendo un índice espectral de -2.7 $\,$

Fuente	RA (°)	Dec (°)	Extensión > 56 TeV (°)	F (10 ⁻¹⁴ ph cm ⁻² s ⁻¹)	$\sqrt{\mathrm{TS}}$ > 56 TeV	$\sqrt{\mathrm{TS}}$ > 100 TeV
J0534+220	83.60 ± 0.02	22.04 ± 0.08	PS	1.38 ± 0.2	11.42	5.04
J1809-193	273.15 ± 0.32	-17.70 ± 0.04	0.94± 0.26	1.28 ± 0.7	3.26	2.13
J1825-134	276.41 ± 0.08	-13.45 ± 0.09	0.41 ± 0.07	4.90 ± 0.7	11.92	4.98
J1839-057	279.81 ± 0.12	-5.62 ± 0.11	0.33 ± 0.07	1.63 ± 0.4	6.06	1.05
J1842-035	280.78 ± 0.19	-3.46 ± 0.40	0.49 ±0. 15	1.69 ± 0.3	5.75	0.55
J1850+001	282.50 ± 0.11	0.16 ± 0.07	0.18 ± 0.07	1.16 ± 0.3	4.70	1.42
J1907+063	286.96 ± 0.10	6.25 ± 0.10	0.5 ± 0.11	3.05 ±0.5	9.02	5.99
J2019+368	304.93 ± 0.09	36.74 ± 0.06	0.23 ± 0.05	1.63 ± 0.3	8.17	4.11
J2030+412	307.76 ± 0.08	41.31 ± 0.08	0.11 ± 0.09	0.94 ± 0.3	5.22	2.92

э

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Los valores del flujo integral calculados asumiendo un índice espectral de -2.0.

Fuente	F (10 ⁻¹⁴ ph cm ⁻² s ⁻¹)	$\sqrt{\mathrm{TS}}$ > 56 TeV	\sqrt{TS} > 100 TeV
J0534+220	$1.57_{-0.2}^{+0.3}$	10.92	4.16
J1809-193	$2.00\substack{+0.8\\-0.5}$	4.49	3.16
J1825-134	$6.43^{+0.8}_{-0.7}$	12.28	6.43
J1839-057	$2.43_{-0.4}^{+0.5}$	6.86	2.53
J1842-035	$1.96\substack{+0.5\\-0.4}$	5.39	1.73
J1850+001	$1.18\substack{+0.4\\-0.3}$	3.90	1.73
J1907+063	$3.52^{+0.5}_{-0.5}$	8.97	6.56
J2019+368	$2.16^{+0.4}_{-0.3}$	9.03	5.28
J2030+412	$1.48^{+0.4}_{-0.3}$	6.25	3.53

3

• • • • • • • • • •

Valores de ajuste espectral para las fuentes que emiten por encima de 100 TeV.

Fuente	\sqrt{TS}	Extensión (°)	$\varphi_0~$ (10-13TeV cm2 s)-1	α	Ecut (TeV)	PL diff
j1825-134	35.8	0.51 ± 0.02	3.45 ± 0.26	2.11 ± 0.05	78 ± 20	5.97
Fuente	\sqrt{TS}	Extensión (°)	${f \varphi}_0$ (10-13TeV cm2 s)-1	α	β	PL diff
i1907+063	22 57	0 60 ± 0 02	1 51 + 0 01	2 42 + 0 02	0.06 + 0.02	2 00

э

Puntos de flujo para la fuente J1825-134. Esta fuente se ajusta a una ley de potencia con corte exponencial.

Bin	\sqrt{TS}	Energía media (TeV)	Flujo (TeV cm ⁻² s ⁻¹)
с	3.90	1.26	$(1.15 \pm 0.30) \times 10^{-11}$
d	10.53	2.14	$(2.95 \pm 0.27) \times 10^{-11}$
е	12.53	3.68	(2.96 ± 0.24) $\times 10^{-11}$
f	13.85	6.32	(1.83 ± 0.18) × 10^{-11}
g	14.14	11.37	(1.43 ± 0.12) × 10^{-11}
h	16.56	21.24	$(1.47 \pm 0.13) \times 10^{-11}$
i	14.93	38.87	$(9.62 \pm 0.10) \times 10^{-12}$
j	10.93	72.84	$(6.38 \pm 0.94) \times 10^{-12}$
k	4.98	125.18	$(2.95 \pm 0.91) \times 10^{-12}$
	3.75	207.38	$(4.44 \pm 1.81) \times 10^{-12}$

< 1 k

Puntos de flujo para la fuente J1907 + 063. Esta fuente se ajusta a una log-parábola.

Bin	\sqrt{TS}	Energía media (TeV)	Flujo (TeV cm ⁻² s ⁻¹)
с	9.2	1.16	$(1.98 \pm 0.21) \times 10^{-11}$
d	8.7	2.01	$(1.21 \pm 0.14) \times 10^{-11}$
е	12.1	3.47	$(1.13 \pm 0.98) \times 10^{-11}$
f	15.1	6.13	$(1.08 \pm 0.78) \times 10^{-11}$
g	13.9	11.15	$(8.77 \pm 0.71) \times 10^{-12}$
h	12.7	20.56	$(6.07 \pm 0.56) \times 10^{-12}$
i	10.0	37.51	$(3.83 \pm 0.47) \times 10^{-12}$
j	6.2	68.75	$(2.55 \pm 0.51) \times 10^{-12}$
k	5.9	123.65	$(2.73 \pm 0.63) \times 10^{-12}$
I	2.4	210.69	$(1.59 \pm 0.83) \times 10^{-12}$

э

Image: A match a ma

Mapa \sqrt{TS} del plano galáctico para emisiones E > 56 TeV.

- Se asume una morfología con un radio de 0.5°.
- Los triángulos negros denotan las fuentes.

A. García

Mapa \sqrt{TS} del plano galáctico para emisiones E > 100 TeV.

- Se asume una morfología con un radio de 0.5° .
- Los triángulos negros denotan las fuentes.

A. García

Conclusiones

- Usando el estimador de energía de redes neuronales y un tiempo de 837 días, se encontró que dos de las nueve fuentes emiten por encima de 100 TeV, el resto > 56 TeV.
- Aún no están claros los mecanismos de emisión.
- Con este método y 837 tránsitos, no se encontró la tercera fuente que emite a más de 100 TeV, J2019+368, reportada en el artículo 'Multiple Galactic Sources with Emission Above 56 TeV Detected by HAWC' en el que se usan 1038 días y el estimador gran parámetro.
- Como trabajo a futuro se agregarán 200 días a este estudio para ver si detecta la fuente faltante con emisión > 100 TeV.

Gracias

Modelos espectrales

• Ley de potencias

$$\frac{dN}{dE} = \phi_0 \left(\frac{E}{10 \, \text{TeV}}\right)^{-\alpha} \tag{1}$$

• Ley de potencias con corte exponencial

$$\frac{dN}{dE} = \phi_0 \left(\frac{E}{10 \, TeV}\right)^{-\alpha} \exp\left(-E/E_{cut}\right) \tag{2}$$

Log-parábola

$$\frac{dN}{dE} = \phi_0 \left(\frac{E}{10 \, TeV}\right)^{-\alpha - \beta \log(E/10 \, TeV)} \tag{3}$$

Image: A math a math

3

Test estadístico

El test estadístico (TS) se define como:

$$TS = 2\log\left(\frac{L_{s+b}}{L_b}\right) \tag{4}$$

Donde L_{s+b} es el mejor ajuste likelihood para la señal más la hipótesis de fondo, mientras que L_b es sólo del fondo. L es la definición para la función likelihood:

$$\mathcal{L}(p) = \prod_{i}^{N} P(x_{i}|p)$$
(5)

P corresponde a la función de probabilidad y p a cierto parámetro.