

Pulsars as astrophysical TeV gamma-ray sources

Alberto Carramiñana⁽¹⁾ & César Álvarez⁽²⁾

⁽¹⁾ Instituto Nacional de Astrofísica, Óptica y Electrónica Luis Enrique Erro 1, Tonantzintla, Puebla, México (2) Universidad Autónoma de Chiapas

INADE

X

Reunión Anual de la División de Rayos Cosmicos SMF En línea 23 de noviembre de 2020

This talk

- Over sixty years ago, Enrico Fermi proposed supernovae as sources of Galactic cosmic rays.
- TeV γ -ray observations show that high-energy phenomena are related to the history of high-mass stars: formation, explosion, remnants.
- Pulsars are the main type of GeV γ -ray emitters. They may be also the power engines of most Galactic TeV emitters.
 - Evolutionary scheme: $PWN \rightarrow TeV$ haloes.
- Understanding pulsar related TeV sources requires understanding of pulsar evolution and the evolution of its environment.

The Fermi paradigm

- In 1949 Enrico Fermi used magnetic mirror to show that shocks can produce power-law spectra of highenergy particles.
- Around 1954 Fermi and others argued that supernovae are particularly efficient (more than molecular clouds) and their rate is well above the energetic requirements.

$$u_{cr} \approx 0.03 \left(\frac{E_{sn}/t_{sn}}{V_{gal}} \right) t_{esc}$$

CONACYT

Galactic plane V; 0.0°; 1523 days

Galactic anticenter

- A good sample of Galactic accelerators:
- Crab Nebula: a prototypical Pulsar Wind Nebula (PWN).
- Geminga & Monogem (PSR B0656+14): TeV halos
- HAWC J0540+233 (PSR B0540+23) y 3HWC J0634+067 (PSR J0633+0632): also TeV halos?
- IC 443: classical supernova remnant.

Galactic plane V; 0.5°; 1523 days

Pulsars TeV @ DRC-SMF nov 2020

Sudoh, Linden & Beacom: "TeV halos are everywhere" Phys Rew D, 100, 043016 - arxiv 1902.08203

The pulsar wind pushes its environment and a TeV halo is formed. Emission is due to very energetic leptons (ICS).

Geminga

PSR B0656+14

Pulsars TeV @ DRC-SMF nov 2020

83 82 81 80 79 68 67 66 65 64 63 62 61 60 59

83 82 81 80 79 78 77 63 62 61 60 59 58 57 56 55 54 52 51

l [°]

Extreme sources

Source	p-Value	Ec (95%)	Ec
eHWC J1825-134	1.000	244 TeV	158
eHWC J1907+063	0.990	218 TeV	162
eHWC J0534+220 (Crab Nebula)	1.000	152 TeV	104
eHWC J2019+368	0.828	120 TeV	88

Abeysekara et al. 2020, PRL 124, 021102.

HAWC source	PSR name	Ė (erg/s)	Age $(P/2\dot{P})$ (kyr)	Distance to Earth (kpc)	Distance between HAWC source and PSR [° (pc)]	HAWC sou extent (po
eHWC J0534 + 220	J0534 + 2200	4.5×10^{38}	1.3	2.00	0.03 (1.05)	
eHWC J1809 – 193	J1809 - 1917	$1.8 imes 10^{36}$	51.3	3.27	0.05 (2.86)	19.4
	J1811 – 1925	6.4×10^{36}	23.3	5.00	0.40 (34.9)	29.7
eHWC J1825 – 134	J1826 – 1334	2.8×10^{36}	21.4	3.61	0.26 (16.4)	22.1
	J1826 – 1256	3.6×10^{36}	14.4	1.55	0.45 (12.2)	9.47
eHWC J1839 – 057	J1838 – 0537	$6.0 imes 10^{36}$	4.89	2.0 ^a	0.10 (3.50)	11.9
eHWC J1842 – 035	J1844 – 0346	4.2×10^{36}	11.6	2.40 ^b	0.49 (20.5)	16.3
eHWC J1850 + 001	J1849 - 0001	9.8×10^{36}	42.9	7.00 ^c	0.37 (45.2)	45.2
eHWC J1907 + 063	J1907 + 0602	2.8×10^{36}	19.5	2.37	0.29 (12.0)	21.5
eHWC J2019 + 368	J2021 + 3651	3.4×10^{36}	17.2	1.80	0.27 (8.48)	6.28
eHWC J2030 + 412	J2032 + 4127	$1.5 imes 10^{35}$	201	1.33	0.33 (7.66)	4.18

^aPseudodistance from [38]. ^bPseudodistance from Eq. (3) of [39]. ^cDistance estimate from [40].

TABLE III. Information on all pulsars with $\dot{E} > 10^{36}$ erg/s within 0.5° of each source. The only pulsar within 0.5° of eHWC J2030 + 412 has an \dot{E} below this threshold; it is included here for completeness. All pulsar parameters come from the ATNF database, version 1.60 [34] unless specified. The distance between the pulsar and the HAWC source, as well as the HAWC high-energy source extent (from Table I), is given in parsecs here, assuming that the HAWC source is the same distance from the Earth as the pulsar.

Abeysekara et al. 2020, PRL 124, 021102.

Pulsars

- Pulsars are the "inner remnant" of supernovae (discovered too late for Enrico Fermi).
- Pulsars were discovered in the radio band (1967) and were the first identified type of γ -ray sources, in the MeV range (Kniffen et al. 1974, Fichtel et al. 1975).
- Dominant type of Galactic source at 1 GeV (231+10 in 4FGL):
 - pulsed emission tends to break between 1 and 10 GeV. -

11

Pulsar dipole model

- Rotational energy losses due to magnetic dipole emission

$$\frac{d}{dt} \left(\frac{1}{2} I \Omega^2 \right) = -\frac{2\ddot{\mu}^2}{3c^3}$$

- Energy losse

es, dynamical age, stellar magnetic field

$$\Rightarrow \dot{E}_{rot} = 4\pi^2 I \left(\dot{P} / P^3 \right) \simeq 3.9 \times 10^{36} \,\mathrm{erg \, s^{-1}} \, I_{45} \left[\frac{\dot{P} / 10^{-13}}{(P / 0.1 \, \mathrm{s})^3} \right]$$

$$\Rightarrow t_d = P / 2 \dot{P} \simeq 15\,800 \,\mathrm{years} \left[\frac{P / 0.1 \,\mathrm{s}}{\dot{P} / 10^{-13}} \right]$$

$$\Rightarrow B_{\star} = \frac{1}{2\pi R_{\star}^3} \left(\frac{3}{2} I c^3 \, P \dot{P} \right)^{1/2} \simeq 3 \times 10^{12} \,\mathrm{G} \left(\frac{P}{0.1 \,\mathrm{s}} \frac{\dot{P}}{10^{-13}} \right)^{1/2}$$

es, dynamical age, stellar magnetic field

$$\Rightarrow \dot{E}_{rot} = 4\pi^2 I \left(\dot{P} / P^3 \right) \simeq 3.9 \times 10^{36} \,\mathrm{erg \, s^{-1}} \, I_{45} \left[\frac{\dot{P} / 10^{-13}}{(P / 0.1 \, \mathrm{s})^3} \right]$$

$$\Rightarrow t_d = P / 2 \dot{P} \simeq 15\,800 \,\mathrm{years} \left[\frac{P / 0.1 \,\mathrm{s}}{\dot{P} / 10^{-13}} \right]$$

$$\Rightarrow B_{\star} = \frac{1}{2\pi R_{\star}^3} \left(\frac{3}{2} I c^3 \, P \dot{P} \right)^{1/2} \simeq 3 \times 10^{12} \,\mathrm{G} \left(\frac{P}{0.1 \,\mathrm{s}} \frac{\dot{P}}{10^{-13}} \right)^{1/2}$$

s, dynamical age, stellar magnetic field

$$\Rightarrow \dot{E}_{rot} = 4\pi^2 I \left(\dot{P} / P^3 \right) \simeq 3.9 \times 10^{36} \,\mathrm{erg \, s^{-1}} \, I_{45} \left[\frac{\dot{P} / 10^{-13}}{(P / 0.1 \, \mathrm{s})^3} \right]$$

$$\Rightarrow t_d = P / 2 \dot{P} \simeq 15\,800 \,\mathrm{years} \left[\frac{P / 0.1 \,\mathrm{s}}{\dot{P} / 10^{-13}} \right]$$

$$\Rightarrow B_{\star} = \frac{1}{2\pi R_{\star}^3} \left(\frac{3}{2} I c^3 P \dot{P} \right)^{1/2} \simeq 3 \times 10^{12} \,\mathrm{G} \left(\frac{P}{0.1 \,\mathrm{s}} \frac{\dot{P}}{10^{-13}} \right)^{1/2}$$

INADE

• Pulsar properties are usually described through the magnetic dipole model.

Particle acceleration

CHENG, HO, AND RUDERMAN

INADE

Pulsars TeV @ DRC-SMF nov 2020

Stellar rotation tends to generate an electric field,

$$\vec{E} = -\frac{1}{c} \left(\vec{\Omega} \times \vec{r} \right) \times \vec{B}$$

• The maximum voltage drop (vacuum)

$$\frac{\Omega^2 B_{\star} R_{\star}^3}{2c^2} \approx \pi \left(\frac{3I}{2c}\frac{\dot{P}}{P^3}\right)^{1/2} \simeq 2.2 \times 10^{15} \,\mathrm{V}$$

• At the stellar surface, $\vec{E} \cdot \vec{B} \neq 0$, so particles flow out of the star to cancel the electric field, creating the magnetosphere, bounded by the light cylinder.

- Acceleration models assume available a fraction of $\Delta \Phi$.

• Acceleration scenarios are based on acceleration at polar caps or outer gaps $\rho = \vec{\Omega} \cdot \vec{B}/2\pi c = 0$

• Relativistic particles leave the magnetosphere through open field lines inducing a pulsar wind.

Hester et al. (2002)

Chandra

HST

Imaging of M1 @ OAGH, Cananea Čadež, Carramiñana & Vidrih 2004

Evolution

- The evolution of the environment plays a role in the diffusion of electrons.
- The evolution of the pulsar plays a role in supplying the electrons.

Figure 2

(a) A deep Chandra X-ray image of the composite SNR G21.5-0.9 (Matheson & Safi-Harb 2005). A circular supernova remnant (SNR) of diameter ≈5' surrounds a symmetric pulsar wind nebula (PWN) of diameter ≈1.5, with the young pulsar J1833-1034 at the center (Gutpa et al., 2005; Camilo et al., 2006). The central location of the pulsar and PWN and the symmetric appearance of the PWN and SNR both argue for a relatively unevolved system in which the PWN expands freely and symmetrically into the unshocked interior of the SNR. (b) A schematic diagram of a composite SNR showing the swept-up interstellar medium shell, hot and cold ejecta separated by the reverse shock, and the central pulsar and its nebula. The expanded PWN view shows the wind termination shock. Note that this diagram does not correspond directly to G21.5-0.9, in that a significant reverse shock has probably yet to form in this young SNR.

Gaensler & Slane (2006)

Pulsar evolution

- Estimates of energy released in e⁺e⁻ depend on pulsar spin-down history.
- Magnetic dipole model predicts, $n = \frac{\Omega \Omega}{\dot{\Omega}^2} =$ inconsistent with observed n < 3.
- Pulsar evolution is highly dependent on the model.
- In Alvarez & Carramiñana (2004) we considered the effect of a monopolar term.

To be continued!

$$= 3 + 2 \left(\frac{\dot{B}_{\star}/B_{\star}}{\dot{\Omega}/\Omega} \right)$$

