The energy spectrum of the light mass group of TeV cosmic rays as measured with HAWC

J.C. Arteaga-Velázquez* and J. D. Álvarez for the HAWC Collaboration Universidad Michoacana, Morelia, Mexico

Content

1. The HAWC y-ray-arser
2. EAS age and energy estimations
3. MC simulations
4. Data selection
5. Analysis
6. \%. $1 \mathrm{H}+\mathrm{He}$ energy spectrum
7. Summary

J.C. Arteaga-HAWC Cosmic Rays

Markarian 501 Markarian 421

Markarian 501 Markarian 421
Markarian 501 Markarian 421

-

 -

 .

—
—

1) The HAWC γ-ray observatory

- From hit times at PMTs, deposited charged, number of PMT's with signal:
- Core location, $\left(X_{c}, Y_{c}\right)$
- Arrival direction, θ
- Fraction of hit PMT's, $\mathrm{f}_{\text {hit }}$
- Lateral charge profile, Qeff(r)

...
.

2) EAS age and energy estimations
 \section*{) LAs age and energy escimacions}

- EAS primary energy:

EAS primary energy:

- Produce LDF tables of MC protons: Binning in r, Qeff, θ and E
EAS primary energy:
- Produce LDF tables of MC protons:都 -

> Maximum likelihood to find table that best fits the Qeff(r) distribution of the event, from which E is obtained.

- Lateral age parameter (s)

- Obtained event-by-event
- Fit of Qeff(r) with a NKG-like function:

$$
f_{c h}(r)=A \cdot\left(r / r_{0}\right)^{s-3} \cdot\left(1+r / r_{0}\right)^{s-4.5}
$$

with $\mathrm{r}_{0}=124.21 \mathrm{~m}$.
A, s are free parameters

[HAWC Collab., APJ 881 (2017); J.A. Morales Soto et al., PoS(ICRC2019 359 (2019)]

 .

- CORSIKA v 7.40 for EAS simulation.
- Fluka/QGSJET-II-04 as low/high-energy interaction models for the main analysis.
- Fluka/EPOS-LHC simulations to study effect of hadronic interaction model.
- Full simulation of detector response with GEANT 4.
- $\theta<70^{\circ} ; \mathrm{A}_{\text {thrown }} \sim 3 \times 10^{6} \mathrm{~m}^{2}$
- Primary nuclei:
- H, He, C, O, Ne, Mg, Si, Fe
- $E=5 \mathrm{GeV}-3 \mathrm{PeV}$
- E^{-2} spectra weighted to follow double powerlaws derived from fits to AMS02 (2015), CREAM-II (2009 \& 2011) and PAMELA (2011) data.

3) MC simulations

Composition models

- But also use different composition models for studies of systematics

Butale

4) Data selection

Selection cuts

- Important to reduce systematic effects on

- Fraction hit (\# of hit PMT's/\# available channels) ≥ 0.2
- $\log _{10}(\mathrm{E} / \mathrm{GeV})=[3.5,5.5]$
- Bias:

$\mathbf{E} \geq \mathbf{1 0} \mathbf{~ T e V : ~}$	
Δ core $_{\text {res }}$	$\leq 15 \mathrm{~m}$
$\left\|\Delta \log _{10}(\mathrm{E} / \mathrm{GeV})\right\| \leq 0.06$	
$\Delta \mathrm{a}$	≤ 0.450

 results:

- $\theta<16.7^{\circ}$
- Successful core and arrival direction reconstruction
- Activate at least 40 PMTs within 40 m from core
- On-array EAS cores
- Multiplicity threshold $\mathrm{N}_{\text {hit }} \geq 75$ PMTs

5）Analysis

Select a sample enriched with light nuclei
 Select a sample enriched with light nuclei

－Age parameter is sensitive to composition
－Select a subsample using a cut on the age
－\quad Subsample must be enriched with the
nuclei to be studied

$$
3
$$

－Content of $\mathrm{H}+\mathrm{He}$ in subsample
－More than 82% of H and He in subsample subsample

```
路
```

人

f

5) Analysis

Correct $\mathrm{N}_{\text {raw }}(\mathrm{E})$ for migration effects

- Solve for $\mathrm{N}^{\mathrm{Unf}}\left(\mathrm{E}^{\mathrm{T}}\right)$ using Bayesian unfolding
[G. D' Agostini, DESY 94-099]
- Stopping criterium: Minimum of weighted mean squared error
[G. Cowan, Stat. Data analysis, Oxford Press. 1998]

$$
W M S E=\frac{1}{N_{\text {points }}} \sum_{i}^{N_{\text {poins }}} \frac{{s t a t_{i}}^{2}+s y s_{i}^{2}}{\mathrm{n}_{\mathrm{i}}}
$$

Build raw energy spectrum of subsample: $\mathrm{N}_{\text {raw }}(E)$

- Experimental data used for analysis:

HAWC-300
$\Delta \mathrm{t}_{\text {eff }}=3.74$ years (94% livetime)
(June/11/15-June/03/19)
$\Delta \Omega=0.27 \mathrm{sr}$
$\Delta t_{\text {eff }}=3.74$ years (04\% livetime)

| Total events
 + selection cuts:
 +$\quad$$1.9 \times 10^{12} \mathrm{EAS}$
 + |
| :--- | ---: |

$\begin{array}{l}\text { Total events } \\ +\end{array} \quad: 2.9 \times 10^{12}$ EAS	
+	age cut: $: 9.9 \times 10^{9} \mathrm{EAS}$

都
\qquad

 .都

.
.

$$
f_{\text {corr }}=\left(N_{\text {light }} / N_{\text {light }}{ }^{H+H e}\right) \quad A_{\text {eff }}{ }^{H+H e}\left(E^{\top}\right)=A_{\text {thrown }} \varepsilon^{H+H e}\left(E^{\top}\right) \frac{\cos \theta_{\max }+\cos \theta_{\min }}{2}
$$

 Obtain effective area from MC simulations

of heavy events
$\mathrm{f}_{\text {corr }}=\left(\mathrm{N}_{\text {light }} / \mathrm{N}_{\text {light }}{ }^{\mathrm{H}+\mathrm{He})}\right.$
Correction factor due to contamination

$$
A_{e f f}{ }^{H+H e}\left(E^{\top}\right)=A_{\text {thrown }} \varepsilon^{H+H e}\left(E^{\top}\right) \frac{\cos \theta_{\text {max }}+\cos \theta_{\min }}{2}
$$

.
(

\qquad
 -

路
-
ty

(

> .

 s

\author{

 }
$\vec{\rightharpoonup}$

是

[^0]e
.

Abstract

Abstract

 \qquad

(2)

Abstract

^[]

[^2]

Fit of spectrum

6） $\mathrm{H}+\mathrm{He}$ energy spectrum

\qquad
\qquad
\qquad

\qquad


```
    *
```

```
    L
```


[^3] ．

.

Fit of spectrum
Fit of spectrum
Fit of spectrum

Fit of spectrum
Fit of spectrum

$\int=$

\author{

}
\square

\author{
Fit of spectrum

 Fit of spectrum

Test Statistics: TS $=-\Delta \mathrm{X}^{2}=42.18$ p -value $\leq 1.95 \times 10^{-4}$ $\begin{array}{ll}\text { He He } \\ & ->3.60 \text { deviation from }\end{array}$

 \qquad

 }

Fit of spectrum

6) H + He energy spectrum

Comparison with measurements from other experiments

- HAWC data confirm previous hints from ATIC-2, CREAM I-III and NUCLEON about the existence of a break in the spectrum of the light component of cosmic rays in the 10 - 100 TeV range.
- HAWC spectrum is shifted to higher energies with regard to ATIC-2 and CREAM data.
- HAWC data is in agreement with NUCLEON and EAS-TOP measurements.

A first analysis of cosmic ray composition with HAWC has allowed to
reconstruct the spectrum of the light component $(\mathrm{H}+\mathrm{He})$ of cosmic rays in
the range $\mathrm{E}=[10 \mathrm{TeV}, 126 \mathrm{TeV}]$.
The light spectrum of cosmic rays is in agreement with data from NUCLEON
and EAS-TOP, but above estimations from ATIC-2, CREAM-II/-III, JACEE and
ARGO-YBJ.
HAWC data show that the cosmic ray spectrum of $\mathrm{H}+\mathrm{He}$ exhibits a new break
around $30.2^{+9.6-7.3} \mathrm{TeV}$.
The study demonstrates that high-altitude water Cherenkov observatories
like HAWC can also be used to study the composition of cosmic rays at
energies as low as 10 TeV.
J.C. Arteaga-HAWC Cosmic Rays 2020 Meeting of the Cosmic Ray Division of the Mexican Physical Society
A first analysis of cosmic ray composition with HAWC has allowed to
reconstruct the spectrum of the light component $(\mathrm{H}+\mathrm{He})$ of cosmic rays in
the range $\mathrm{E}=[10 \mathrm{TeV}, 126 \mathrm{TeV}]$.
The light spectrum of cosmic rays is in agreement with data from NUCLEON
and EAS-TOP, but above estimations from ATIC-2, CREAM-II/-III, JACEE and
ARGO-YBJ.
HAWC data show that the cosmic ray spectrum of $\mathrm{H}+\mathrm{He}$ exhibits a new break
around $30.2^{+9.6-7.3} \mathrm{TeV}$.
The study demonstrates that high-altitude water Cherenkov observatories
like HAWC can also be used to study the composition of cosmic rays at
energies as low as 10 TeV.
J.C. Arteaga-HAWC Cosmic Rays 2020 Meeting of the Cosmic Ray Division of the Mexican Physical Society
A first analysis of cosmic ray composition with HAWC has allowed to
reconstruct the spectrum of the light component $(\mathrm{H}+\mathrm{He})$ of cosmic rays in
the range $\mathrm{E}=[10 \mathrm{TeV}, 126 \mathrm{TeV}]$.
The light spectrum of cosmic rays is in agreement with data from NUCLEON
and EAS-TOP, but above estimations from ATIC-2, CREAM-II/-III, JACEE and
ARGO-YBJ.
HAWC data show that the cosmic ray spectrum of $\mathrm{H}+\mathrm{He}$ exhibits a new break
around $30.2^{+9.6-7.3} \mathrm{TeV}$.
The study demonstrates that high-altitude water Cherenkov observatories
like HAWC can also be used to study the composition of cosmic rays at
energies as low as 10 TeV.
J.C. Arteaga-HAWC Cosmic Rays
A first analysis of cosmic ray composition with HAWC has allowed to
reconstruct the spectrum of the light component $(\mathrm{H}+\mathrm{He})$ of cosmic rays in
the range $\mathrm{E}=[10 \mathrm{TeV}, 126 \mathrm{TeV}$.
The light spectrum of cosmic rays is in agreement with data from NUCLEON
and EAS-TOP, but above estimations from ATIC-2, CREAM-II/-III, JACEE and
ARGO-YBJ.
HAWC data show that the cosmic ray spectrum of $\mathrm{H}+\mathrm{He}$ exhibits a new break
around $30.2^{+9.6-7.3} \mathrm{TeV}$.
The study demonstrates that high-altitude water Cherenkov observatories
like HAWC can also be used to study the composition of cosmic rays at
energies as low as 10 TeV.
2020 Meeting of the Cosmic Ray Division of the Mexican Physical Society
A first analysis of cosmic ray composition with HAWC has allowed to
reconstruct the spectrum of the light component $(\mathrm{H}+\mathrm{He})$ of cosmic rays in
the range $\mathrm{E}=[10 \mathrm{TeV}, 126 \mathrm{TeV}]$.
The light spectrum of cosmic rays is in agreement with data from NUCLEON
and EAS-TOP, but above estimations from ATIC-2, CREAM-II/-III, JACEE and
ARGO-YBJ.
HAWC data show that the cosmic ray spectrum of $\mathrm{H}+\mathrm{He}$ exhibits a new break
around $30.2^{+9.6-7.3} \mathrm{TeV}$.
The study demonstrates that high-altitude water Cherenkov observatories
like HAWC can also be used to study the composition of cosmic rays at
energies as low as 10 TeV.
J.C. Arteaga-HAWC Cosmic Rays
A first analysis of cosmic ray composition with HAWC has allowed to
reconstruct the spectrum of the light component $(\mathrm{H}+\mathrm{He})$ of cosmic rays in
the range $\mathrm{E}=[10 \mathrm{TeV}, 126 \mathrm{TeV}]$.
The light spectrum of cosmic rays is in agreement with data from NUCLEON
and EAS-TOP, but above estimations from ATIC-2, CREAM-II/-III, JACEE and
ARGO-YBJ.
HAWC data show that the cosmic ray spectrum of $\mathrm{H}+\mathrm{He}$ exhibits a new break
around $30.2^{+9.6-7.3 ~ T e V . ~}$
The study demonstrates that high-altitude water Cherenkov observatories
like HAWC can also be used to study the composition of cosmic rays at
energies as low as 10 TeV.
J.C. Arteaga-HAWC Cosmic Rays
A first analysis of cosmic ray composition with HAWC has allowed to
reconstruct the spectrum of the light component (H+He) of cosmic rays in
the range $\mathrm{E}=[10 \mathrm{TeV}, 126 \mathrm{TeV}$.
The light spectrum of cosmic rays is in agreement with data from NUCLEON
and EAS-TOP, but above estimations from ATIC-2, CREAM-II/-III, JACEE and
ARGO-YBJ.
HAWC data show that the cosmic ray spectrum of $\mathrm{H}+\mathrm{He}$ exhibits a new break
around $30.2^{+9.6-7.3} \mathrm{TeV}$.
The study demonstrates that high-altitude water Cherenkov observatories
like HAWC can also be used to study the composition of cosmic rays at
energies as low as 10 TeV.
2020 Meeting of the Cosmic Ray Division of the Mexican Physical Society
analysis of cosmic ray composition with HAWC has allowed to
ruct the spectrum of the light component $(\mathrm{H}+\mathrm{He})$ of cosmic rays in
ge $\mathrm{E}=[10 \mathrm{TeV}, 126 \mathrm{TeV}]$.
ht spectrum of cosmic rays is in agreement with data from NUCLEON
S-TOP, but above estimations from ATIC-2, CREAM-II/-III, JACEE and
BJ.
$\begin{aligned} & \text { ata show that the cosmic ray spectrum of } \mathrm{H}+\mathrm{He} \text { exhibits a new break } \\ & \text { demonstrates that high-altitude water Cherenkov observatories } \\ & \text { W as low as } 10 \text { TeV. } \\ & 2020 \text { Meeting of the Cosmic Ray Division of the Mexican Physical Society }\end{aligned}$
lysis of cosmic ray composition with HAWC has allowed to
the spectrum of the light component $(\mathrm{H}+\mathrm{He})$ of cosmic rays in
[$[10 \mathrm{TeV}, 126 \mathrm{TeV}]$.
ectrum of cosmic rays is in agreement with data from NUCLEON
but above estimations from ATIC-2, CREAM-II/-III, JACEE and
how that the cosmic ray spectrum of H+He exhibits a new break
2020 Meeting of the Cosmic Ray Division of the Mexican Physical Society
ow also be used to study the composition of cosmic rays at 10 TeV.

of cosmic ray composition with HAWC has allowed to
spectrum of the light component $(\mathrm{H}+\mathrm{He})$ of cosmic rays in
$0 \mathrm{TeV}, 126 \mathrm{TeV}$.
um of cosmic rays is in agreement with data from NUCLEON
ut above estimations from ATIC-2, CREAM-II/-III, JACEE and
that the cosmic ray spectrum of $\mathrm{H}+\mathrm{He}$ exhibits a new break
TeV.
2020 Meeting of the Cosmic Ray Division of the Mexican Physical Society
as be used to study the composition of cosmic rays at 10 TeV.
2-20

Thank you

HAWC

[^0]:

[^2]: $-$

[^3]: ．

