Centrality determination through the BeBe multiplicity

Beam - target: Au-Au

Generator: UrQMD v. 3.4

Events: 1 000 000 mbias (0-16 fm)

Energy: $\sqrt{s} = 11 \text{ GeV}$

MPDROOT framework: BeBe

Luis Valenzuela-Cazares

Beam-beam monitoring detector (BeBe)

-2 m

MPD Interaction Point

+2 m

BeBe C

Studies:

Centrality determination Event plane resolution

Each side:

162 cells 6 rings

Each cell: 5 cm height x 2 cm width

66 x 76 cm

BeBe Pseudorapididy coverage: $1.9 < |\eta| < 3.97$

Centrality determination in the experiment

In the experiments, centrality is determined through observables such as multiplicity
N and deposited energy E in the detectors.

Methods for the multiplicity and centrality connection

- **Approach 1:** Centrality classes determination through both simulated multiplicity and impact parameter (UrQMD).
- **Approach 2:** Multiplicity fit by the negative binomial distribution (NBD) and the Monte Carlo Glauber (MCG) model.

Centrality expressed as a fraction of the total cross section

Centrality is usually expressed as a fraction of the total nuclear interaction crosssection:

$$\frac{\sigma}{\sigma_{total}}$$

These fractions are expressed as percentages and called centrality classes.

Ingredients to determine centrality

- **Approach 1:** Centrality classes determination through both simulated multiplicity and impact parameter (UrQMD).
- Centrality classes definition.
- Multiplicity distribution (generator + detector simulation).
- Impact parameter distribution (generator).

In terms of **b**:

$$C_b = \frac{\int_0^b \frac{d\sigma}{db'} db'}{\int_0^{b_{max}} \frac{d\sigma}{db'} db'} = \frac{1}{\sigma_{AA}} \int_0^b \frac{d\sigma}{db'} db'.$$

In terms of **N**:

$$c_m = \frac{\int_{N_{max}}^{N_i} \frac{dN_{ev}}{dN} dN}{\int_{N_{max}}^{0} \frac{dN_{ev}}{dN} dN}$$

Miller ML, et al. 2007. Annu. Rev. Nucl. Part. Sci. 57:205–43

Centrality classes

In terms of **b**:

In terms of **N**:

BeBe rings X-Y particle distribution

Rings names: 1, 2,...,6 from the inner ring to the external ring.

Events: 10 000 Au+ Au 11 GeV mbias (0-16 fm)

Rings multiplicity vs impact parameter

• Use rings 3-6 for centrality determination.

Correlation between impact parameter and multiplicity.

Centrality classes determination: finding **b** ranges through multiplicity and the generator.

- 1.- Make the histogram of events number for each bin of ${\bf b}$.
- 2.- Construct histogram of the number of particles for each event for each bin of **b**.
- 3.- Integrate over bins of **b** until the value for each centrality class has been determined.

$$c = \frac{\int_0^b \frac{dN_{ch}}{db'} db'}{\int_0^{b_{max}} \frac{dN_{ch}}{db'} db'} = \frac{1}{N_{total}} \int_0^b \frac{dN_{ch}}{db'} db'.$$

Centrality classes (Multiplicity of BEBE rings 3-6)

bf (fm)

bi (fm)

Class %

	` ,	• •	
0-10	0	2.78	
10-20	2.78	4.00	
20-30	4.00	4.98	>
30-40	4.98	5.86	₹ 60000 - 50000 -
40-50	5.86	6.69	40000
50-60	6.69	7.55	30000
60-70	7.55	8.44	20000
70-80	8.44	9.46	20-20% 40-50% 50-60% 80-90% 80-90%
80-90	9.46	10.75	0 2 4 6 8 10 12 14 b(fm)
90-100	10.75	14.96	

Same procedure for multiplicity classes determination.

- 1.- Make the histogram of events number for each bin of multiplicity.
- 2.- Construct histogram of the number of particles for each event for each bin of multiplicity.
- 3.- Integrate over bins of multiplicity until the value for each centrality class has been determined.

Note: All histograms are one-dimensional.

Multiplicity Classes

Centrality classes

In terms of **b**:

In terms of **N**:

Centrality classes (rings 3, 4, 5, 6 multiplicity).

Class %	bi (fm)	bf (fm)	Ni	Nf
0-10	0	2.7895	100	37
10-20	2.7895	4.0005	37	29
20-30	4.0005	4.9805	29	23
30-40	4.9805	5.8695	23	18
40-50	5.8695	6.6905	18	14
50-60	6.6905	7.5595	14	11
60-70	7.5595	8.4495	11	8
70-80	8.4495	9.4405	8	5
80-90	9.4405	10.7505	5	3
90-100	10.7505	14.9605	3	0

Summary

- BeBe can be used to estimate centrality through multiplicity.
- These methods are based on the principle that the number of produced charged particles is correlated with centrality.
- While large multiplicities are expected for central events, low multiplicities are expected for peripheral events.
- The multiplicity trend of spectator protons is the opposite of the produced particles. So, it is necessary to omit the spectators for centrality determination via multiplicity.
- Spectator protons are close to the beam direction, which suggests that the inner rings of BeBe will not be useful for centrality determination via multiplicity.
- Rings 3, 4, 5, and 6 should be used for centrality determination.

Backup slides

Repository for macros, root files, and notes:

https://gitlab.com/luisval/masterthesis

https://gitlab.com/mexnica-physics-analysis-and-offline-group

Also, see the work of Ilya Segal et al for the NBD + Glauber approach:

https://github.com/IlyaSegal/NICAhttps://github.com/IlyaSegal/NICA

https://indico.jinr.ru/event/1129/contributions/8524/attachments/6593/8669/MpdPWG1_16012020.pdf

Simulation without the detector

Multiplicity Classes. Simulation without detector.

MCTracks

Centrality classes. Simulation without detector.

Class %	bi (fm)	bf (fm)	Ni	Nf
0-10	0	2.7305	170	81
10-20	2.7305	3.9305	81	68
20-30	3.9305	4.8895	68	55
30-40	4.8895	5.7695	55	44
40-50	5.7695	6.6195	44	34
50-60	6.6195	7.4695	34	26
60-70	7.4695	8.3595	26	19
70-80	8.3595	9.3805	19	12
80-90	9.3805	10.6895	12	5
90-100	10.6895	14.9305	5	0

BeBe simulation vs simulation without detector

BeBe simulation vs simulation without detector

Class %	bi (fm)	bf (fm)	bi (fm)	bf (fm)	Discrepancy (%)
0-10	0	2.7895	0	2.7305	2.1607
10-20	2.7895	4.0005	2.7305	3.9305	1.7809
20-30	4.0005	4.9805	3.9305	4.8895	1.8611
30-40	4.9895	5.8695	4.8895	5.7695	1.5772
40-50	5.8605	6.6905	5.7695	6.6195	1.2085
50-60	6.6905	7.5595	6.6195	7.4695	1.0844
60-70	7.5595	8.4495	7.4695	8.3595	1.0766
70-80	8.4495	9.4405	8.3595	9.3805	0.8528
80-90	9.4405	10.7505	9.3805	10.6895	0.5706
90-100	10.7505	14.9605	10.6895	14.9305	0.2006

MPD Pseudorapidity coverage

Pseudorapity charged particles. 10000 Au+Au @11GeV UrQMD.

BeBe multiplicity all rings

Charged particles multiplicity BEBE.

Centrality classes (Multiplicity of BEBE rings 3-6)

Rings 3-6

Centrality determination

• Approach 2: Multiplicity fit by the negative binomial distribution (NBD) and the Monte Carlo Glauber (MCG) model.

Ingredients to determine centrality

Approach 2: Multiplicity fit by the negative binomial distribution (NBD) and the Monte Carlo Glauber (MCG) model.

- Centrality classes definition
- Multiplicity distribution (generator + detector simulation).
- Negative binomial distribution.
- Monte Carlo Glauber model.

Centrality expressed as a fraction of the total cross section

Centrality is usually expressed as a fraction of the total nuclear interaction crosssection:

$$\frac{\sigma}{\sigma_{total}}$$

These fractions are expressed as percentages and called centrality classes.

The overlap in a collision is usually expressed as a cross-section.

$$\sigma(b) = 2\pi \int_0^b bdb = \pi b^2$$

where **b** is the distance between the centers of the two nuclei, and a total cross-section is:

$$\sigma_{total}(b) = 2\pi \int_{0}^{2R} bdb = \pi (2R)^{2}$$

where **R** is the nuclear radius.