Evolution of Δ and the risetime with time

Long-term performance call

Juan Miguel Carceller

University of Granada

March 10, 2020

Outline

- Study of the Δ as a function of the year by making windows of time and plotting the mean value for each bin
- Explanation in terms of the risetime

Evolution of Δ

- The average value of Δ is decreasing with time
- The same behaviour is observed for $X_{\text {max }}$ obtained from the Δ, since it is a linear scaling of the values of $\Delta: X_{\max }=a+b \Delta+c \log \left(E_{\mathrm{SD}} / \mathrm{eV}\right)$
- All energies and zenith angles (up to 60°) included (plots made for different energy bins in the backup)

- Thanks for the data to Carlos Todero (data until 08/2018)

Explanation in terms of the risetime

- Δ_{i} is obtained from the risetime: $\Delta_{i}=\frac{t_{1 / 2}-t_{1 / 2}^{\text {bench }}}{\sigma_{1 / 2}}$
- What is known as "Delta" is obtained as an average over all the stations for each event $\langle\Delta\rangle=\frac{1}{N} \sum_{i=1}^{N} \Delta_{i}$
- All energies and zenith angles (up to 45 degrees) included

- Risetime decreases $\Longrightarrow \Delta$ decreases

Backup

Energy and zenith distribution

- Energy and zenith distributions of the data used to make the plots for Δ

Bins of energy for Δ

Bins of energy for Δ (continuation)

4

\triangleleft

\triangleleft

Bins of energy for $t_{1 / 2}$

Risetime error

- All energies and zenith angles (up to 45 degrees) included

Ratio of the risetime and its uncertainty

