The $P_{c}(4312)^{+}$exotic

César Fernández Ramírez
Instituto de Ciencias Nucleares - UNAM

Introduction

Minimal quark model

Mesons
(bosons)

Baryons
(fermions)

Infinite options for color singlets

Compact pentaquark

Compact tetraquark

Baryon-meson molecule

Meson-meson molecule

Glueball

Hybrid

(Multi-baryon molecules are called "nuclei")

State superposition

$$
\begin{gathered}
\left|M>=\alpha_{0}\right| q \bar{q}>+\alpha_{1}\left|g g>+\alpha_{2}\right| q \bar{q} g>+\alpha_{3}\left|q \bar{q} g g>+\alpha_{4}\right| q \bar{q} q \bar{q}>\ldots \\
\left|B>=\alpha_{0}\right| q q q>+\alpha_{1}\left|q q q q \bar{q}>+\alpha_{2}\right| q q q g>+\alpha_{3} \mid q q q q \bar{q} g>\ldots
\end{gathered}
$$

$$
\sum_{i}\left|\alpha_{i}\right|^{2}=1
$$

Example: pentaquark

$$
J / \psi p \rightarrow P_{c} \rightarrow J / \psi p
$$

$$
[c \bar{c}][u u d] \rightarrow[c \bar{c} u u d] \rightarrow[c \bar{c}][u u d]
$$

The minimal quark content is that of a pentaquark

Signals

Amplitude analysis of the $\mathrm{P}_{\mathrm{c}}(4312)^{+}$

$P_{c}(4312)^{+}$signal

Signal interpretation

S-matrix theory

- Probability conservation \Rightarrow Unitarity
- Particle \leftrightarrow antiparticle \Rightarrow Crossing symmetry
- Causality \Rightarrow Analyticity and no poles in 1 st Riemann sheet
- Additional symmetries: gauge, chiral, etc.

Spectrum and singularities

Poles and cuts

- The amplitude is an analytical function in the complex plane
- Singularities determine the amplitude (aka the structure)
- Poles
- Cuts
- Singularities are associated to the dynamics

$$
\left[\begin{array}{ll}
A_{11}=|p J / \psi\rangle \rightarrow|p J / \psi\rangle & A_{12}=|p J / \psi\rangle \rightarrow\left|\Sigma_{c}^{+} \bar{D}^{0}\right\rangle \\
A_{21}=\left|\Sigma_{c}^{+} \bar{D}^{0}\right\rangle \rightarrow|p J / \psi\rangle & \left.A_{22}=\left|\Sigma_{c}^{+} \bar{D}^{0}>\rightarrow\right| \Sigma_{c}^{+} \bar{D}^{0}\right\rangle
\end{array}\right]
$$

Riemann sheets structure

Near-threshold theory: hypotheses

- Hypotheses:
- Only one partial wave contributes to the signal
- The threshold drives the physics (tested)
- Further singularities are irrelevant (tested)
- Caveat:
- We fit the J/ ψ p projection (no info on quantum numbers)

Near-threshold theory: equations

$$
\begin{aligned}
& \frac{d N}{d \sqrt{s}}=\rho(s)\left[|F(s)|^{2}+B(s)\right] \quad F(s)= \\
& F(s)=P_{1}(s) T_{11}(s) \quad\left(T^{-1}\right)_{i j}=M_{i j}-i k_{i} \delta_{i j}
\end{aligned}
$$

$$
M_{i j}(s)=m_{i j}-c_{i j} s
$$

Matrix elements $M_{i j}$ are singularity free and can be Taylor expanded

Near-threshold amplitude

$$
\begin{array}{ll}
\frac{d N}{d \sqrt{s}}=\rho(s)\left[|F(s)|^{2}+B(s)\right] & \begin{array}{c}
\text { Production, hyperons and effects } \\
\text { due to further singularities }
\end{array} \\
B(s)=b_{0}+b_{1} s & {\left[m_{22}-c_{22} s-i k_{2}\right]} \\
\text { Channel coupling }
\end{array}
$$

Scattering length approximation if $\mathrm{c}_{\mathrm{ij}}=0$
Only poles on sheets II and IV
If $\mathrm{c}_{\mathrm{ij}} \neq 0$ (effective range approximation); poles in any sheet

Fits: scattering length vs effective range

2 channel scattering length approximation

$$
\chi^{2} / d o f=48.1 /(66-7)=0.82
$$

2 channel effective range approximation

$$
\chi^{2} / d o f=43 /(66-9)=0.75
$$

Poles

Scattering lenght

$$
\mathrm{M}=4319.7 \pm 1.6 \mathrm{MeV} \quad \Gamma=-0.8 \pm 2.4 \mathrm{MeV}
$$

Effective range

$$
\mathrm{M}=4319.8 \pm 1.5 \mathrm{MeV}
$$

$\Gamma=9.2 \pm 2.9 \mathrm{MeV}$

Pole movement: scattering length

Conclusions

Summary of the current consensus

- Universally accepted by the hadron molecule community that the $P_{c} s$ are hadron molecules
- Universally accepted by the quark model community that the $P_{c} s$ are compact pentaquarks
- Universally accepted by the hadrocharmonium community that the $P_{c} s$ are hadrocharmonia
- The triangles community is universally dissapointed because LHCb rules them out for two of the states

Conclusions

- Seems that $P_{c}(4312)$ dynamics is driven by the threshold
- Molecule? Virtual state?
- We favor the virtual state explanation
- We have to wait for the quantum numbers, although a lot of (sensible) especulation is already in the market

Thanks.

[^0]
[^0]: PhD comics

