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Introduction

In experiments for direct dark matter searches or detection of
(CENνS), the experimental signal entails the detection of the
ionization produced by the recoiling target ions following a scattering
event.

The electronic excitation produced by a recoiling ion is typically
smaller than that produced by an electron of the same energy, we
name this as quenching ([eVnr]→ [eVee]).

quenching =
total ionization energy

total deposited energy
= fn =

η̄

εR

where η̄ and εR are the ionization energy and the total recoil energy in
adimensional units.
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Introduction

In 1963, Lindhard gave a parametrization for the quenching, but it is
only acceptable for energy depositions (& 10 keV ).

Recent measurements of the QF for nuclear recoils in silicon (Si)
reveal a clear deviation from Lindhard formula, below ER <4 keV.

Lindhard neglected the binding energy term. He end with a simplified
integro-differential equation.

In this work we incorporate correctly the binding energy term into the
physical basic equation.

This leads to a modify integro-differential equation that can be solved
numerically.
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Importance of Quenching Factor for DM and ν
experiments.

Remark

Different quenching, e.g Lindhard and Chavarria, change significantly the
rate for recent CONNIE results (PhysRevD.100.092005).

Figure: (left) Observable neutrino recoil spectrum in the CONNIE, (right) CEνNS
event rate: 95% confidence level limit from the reactor on-off
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Importance of Quenching Factor for DM and ν
experiments.
For DM searches with pure crystals
the quenching play an important role
for calibration and efficiency.

Figure: Detection efficiency, used for the
WIMP search analysis (Phys. Rev. D
94, 082006).

The cutoff for the efficiency is about
60 eVee that correspont to
∼ (0.3± 0.1)keVnr.

Figure: DAMIC 0.6 kg limit.
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The model

Consider an ion in a homogeneous substance moving with a kinetic energy
E, after recoiling off an interaction with an incident particle (e.g., a DM
particle).

Suppose that the ion recoils from the interaction with an energy ER , and
that an energy U is lost to some disruption of the atomic bonding, then
ER = E + U

The moving ion sets off a cascade of slowing-down processes that dissipate
the energy E throughout the medium.
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The model

Lindhard considered the atomic movement ν̄ an additive quantity over the
individual slowing-down processes generated by the initial scattering, for ν̄
the equation is∫

dσn,e [ν̄ (E − Tn − ΣiTei ) + ν̄ (Tn − U)− ν̄(E ) +Σi ν̄e (Tei − Uei )] = 0
(1)

where Tn and Tei are the energies transferred to nuclei and electrons in
the CM frame.

Lindhard originally neglects the binding energy in all his computations.

Y.Sarkis (ICN) Phys. Rev. D 101, 102001 (2020) DPyC 2020 8 / 18



The model

Here φ̄ = ν̄, can be any aditive physical quantity.
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The model

In order to compute a solution for ν̄, we have to made five approximations.

i Neglect atomic movement from electrons, since is negligible at low
energies ν̄e = 0.

ii Energy transferred to ionized electrons is small compared to that
transferred to recoiling ions .

iii Effects of electronic and atomic collisions can be treated separately;
εR = η̄ + ν̄.

iv Tn is also small compared to the energy E.

v Expand the terms in Eq. 1 up to second order including binding
energy.
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Simplified integral equation with binding energy

With the above remarks and with the use of the electronic stopping power
Se = kε1/2 (with k a constant) and the nuclear stopping dσn(t) with
t = ε2 sin2(θ/2), we can transform Eq.1 to:

−1

2
kε3/2ν̄ ′′(ε)+kε1/2︸ ︷︷ ︸

Se

ν̄ ′(ε) =

∫ ε2

εu
dt

f
(
t1/2

)
2t3/2︸ ︷︷ ︸
dσn

[ν̄(ε−t/ε)+ν̄(t/ε−u)−ν̄(ε)]

(2)
This equation can be solved numerically from ε > u. So the equation
predicts a threshold energy of u (εthresholdR = 2u). The function f (t) is
related to the interatomic potential (e.g Thomas-Fermi).

The equation admits a solution featuring a ”kink” at ε = u (discontinuous
1st derivative).

Y.Sarkis (ICN) Phys. Rev. D 101, 102001 (2020) DPyC 2020 11 / 18



Numerical solution

Shooting method

We have the boundary condition
ν̄ ′′(ε→∞)→ 0.

Now, since the R.H.S of Eq. 2 is zero at
ε = u and lower, we impose that the
L.H.S to be zero at this point, this gives
the relation

ν̄ ′(u) =
u

2
ν̄ ′′(u)

So we give an initial try of ν̄ ′ to get the
boundary condition, we shoot in this way
until the boundary condition is satisfy.
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Fits to data

We set a grid of 7x7 points in U and k region, in an acceptable ranges,
and compute the χ2/ndf of each (U,k) point to determine the optimal
value, we do this for Si and Ge.

Y.Sarkis (ICN) Phys. Rev. D 101, 102001 (2020) DPyC 2020 13 / 18



Fits to data

In general, U includes both the energy needed to remove the ion from its
site and contributions to excitation of bound atomic electrons, therefore
incorporates the Migdal effect.

Silicon* Germanium*
Shell U(eV) #e Shell U(eV) #e

[Ne]4 4 [Ar]18 18
2p 100 6 3d 30 10

Average e − h 3.7 4 Average e − h 3.0 4
Dislocation 36 Dislocation 23

(3)

* E. Clementi and D.L.Raimondi, J. Chem. Phys. 1963, 38, 2686.
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Ansatz

We can implement a good
analytical approximation to
solve the integral equation.

The idea is to lessen the
ionization contribution,
subtracting a fraction of the
electronic stopping power.

η̄ = η̄lind − cε1/2 − c ′ where c,
c’ and u are estimated from a fit
to the available data.

Where η̄ = ε− ν̄. ε 
3−10 2−10 1−10 1

ν

3−10

2−10

1−10

1

 Correctedν

 Lindhard onlyν

+uε=ν
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Results (Error band approximate cover the data fluctuation)

Figure: Measurements of the QF in Ge (points with error bars) compared to the
Lindhard model (dot-dashed line), the fitted ansatz, and the numerical solution
with U = 0.02 keV and k = 0.162.
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Results

Figure: Measurements of the QF in Si (points with error bars) compared to the
Lindhard model (dot-dashed line), the fitted ansatz, and the numerical solution
with U = 0.15 keV and k = 0.161.
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Conclusions

1 We found an appropriate form for the basic integro-differential
equation describing the energy given to atomic motion by nuclear
recoils in pure crystals, when a constant binding energy is considered.

2 Measurements of QF in Ge detectors are well described by our model.

3 In the case of Si, the QF measurements are well described by our
model if the binding energy is in the range 100-250 eV, where this is
consistent with DAMIC data estimate (cutoff of ≈ 0.3 keV).

4 The predicted cutoff for Si is much larger than the Frenkel
(dislocation) energy of about 36 eV, and therefore also greater than
the physical cutoff.

5 This model can be extended considering energy variable binding
energy and modify expression for Se for low energies. Work in
progress.
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