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Introduction

@ In experiments for direct dark matter searches or detection of
(CENwS), the experimental signal entails the detection of the

ionization produced by the recoiling target ions following a scattering

event.
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@ The electronic excitation produced by a recoiling ion is typically
smaller than that produced by an electron of the same energy, we
name this as quenching ([eVy;] — [eVee]).

. total ionization ener 1l
quenching = - & _ = L

total deposited energy ER
where 77 and eg are the ionization energy and the total recoil energy in

adimensional units.
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Introduction

@ In 1963, Lindhard gave a parametrization for the quenching, but it is
only acceptable for energy depositions (2 10 keV ).

@ Recent measurements of the QF for nuclear recoils in silicon (Si)
reveal a clear deviation from Lindhard formula, below Er <4 keV.

o Lindhard neglected the binding energy term. He end with a simplified
integro-differential equation.

@ In this work we incorporate correctly the binding energy term into the
physical basic equation.

@ This leads to a modify integro-differential equation that can be solved
numerically.

Y Sarkis (ICN) Phys. Rev. D 101, 102001 (2020) DPyC 2020  4/18



Importance of Quenching Factor for DM and v
experiments.

Different quenching, e.g Lindhard and Chavarria, change significantly the
rate for recent CONNIE results (PhysRevD.100.092005).
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Figure: (left) Observable neutrino recoil spectrum in the CONNIE, (right) CEvNS
event rate: 95% confidence level limit from the reactor on-off
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Importance of Quenching Factor for DM and v
experiments.

For DM searches with pure crystals  The cutoff for the efficiency is about
the quenching play an important role 60 ¢V, that correspont to

for calibration and efficiency.
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WIMP search analysis (Phys. Rev. D Figure: DAMIC 0.6 kg limit.
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The model

@ Consider an ion in a homogeneous substance moving with a kinetic energy
E, after recoiling off an interaction with an incident particle (e.g., a DM
particle).

@ Suppose that the ion recoils from the interaction with an energy Eg , and
that an energy U is lost to some disruption of the atomic bonding, then
Er=E+ U

@ The moving ion sets off a cascade of slowing-down processes that dissipate
the energy E throughout the medium.
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The model

Lindhard considered the atomic movement © an additive quantity over the

individual slowing-down processes generated by the initial scattering, for
the equation is

fdan,e [D(E— Tn = Z;Te,') —|-Z7(Tn = U) — ﬂ(E) —1—2,-176(Te,- = Uei)] =0

where T, and Tg; are the energies transferred to nuclei and electrons in
the CM frame.

Lindhard originally neglects the binding energy in all his computations. )
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The model

Here ¢ = &, can be any aditive physical quantity.
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The model

In order to compute a solution for 7, we have to made five approximations.J

o

o

Neglect atomic movement from electrons, since is negligible at low
energies U, = 0.

Energy transferred to ionized electrons is small compared to that
transferred to recoiling ions .

Effects of electronic and atomic collisions can be treated separately;
ER=T+U.

T, is also small compared to the energy E.

Expand the terms in Eq. 1 up to second order including binding
energy.
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Simplified integral equation with binding energy

With the above remarks and with the use of the electronic stopping power
Se = ke'/? (with k a constant) and the nuclear stopping do,(t) with
t = £2sin?(6/2), we can transform Eq.1 to:

1, 37250 1/2 5 < () _ _
—§k5 (e)+ke (e) = dt TIE [D(e—t/e)+0(t/e—u)—D(e)]
Se EU | ~ ;

(2)
This equation can be solved numerically from € > u. So the equation
predicts a threshold energy of u (sfreshold — 2,)). The function f(t) is

related to the interatomic potential (e.g Thomas-Fermi).

The equation admits a solution featuring a "kink" at £ = u (discontinuous
1st derivative).
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Numerical solution

Shooting method 'z

We have the boundary condition
7"(e = 00) = 0. U

Now, since the R.H.S of Eq. 2 is zero at
€ = u and lower, we impose that the
L.H.S to be zero at this point, this gives
the relation

7/(u) = 57(u)

So we give an initial try of 7’ to get the
boundary condition, we shoot in this way
until the boundary condition is satisfy.
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Fits to data

We set a grid of 7x7 points in U and k region, in an acceptable ranges,
and compute the x?/ndf of each (U,k) point to determine the optimal
value, we do this for Si and Ge.
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Fits to data

In general, U includes both the energy needed to remove the ion from its
site and contributions to excitation of bound atomic electrons, therefore
incorporates the Migdal effect.

Silicon* Germanium*
Shell U(eV) #e Shell U(eV) #e
[Ne]* 4 [Ar]® 18
2p 100 6 3d 30 10 (3)
Average e — h 3.7 4 Averagee—h 3.0 4
Dislocation 36 Dislocation 23

* E. Clementi and D.L.Raimondi, J. Chem. Phys. 1963, 38, 2686.
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Ansatz

@ We can implement a good b1
analytical approximation to
solve the integral equation.

@ The idea is to lessen the 10
ionization contribution,
subtracting a fraction of the
electronic stopping power.

1072
- = 1 2 / —— Vv Corrected
° 17 - nlmd — ce / —C Where c, -V Lindhard only
c' and u are estimated from a fit ke
to the available data. o R
_ — 10° 102 10t 1
© Where j=¢— 1. €
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Results (Error band approximate cover the data fluctuation)
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Figure: Measurements of the QF in Ge (points with error bars) compared to the
Lindhard model (dot-dashed line), the fitted ansatz, and the numerical solution
with U = 0.02 keV and k = 0.162.
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Results

~ lE : | | ;
U e s Sl ]
. -
’ - o Zech E
- o Brian ]
I . CHICAGO ]
B « ANTONELLA
10 E e Lindhard =
E ---—- Model E
: — Numeric ]
1073 : L o
o ! 10 10

E, (keV)
Figure: Measurements of the QF in Si (points with error bars) compared to the

Lindhard model (dot-dashed line), the fitted ansatz, and the numerical solution
with U = 0.15 keV and k = 0.161.
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Conclusions

@ We found an appropriate form for the basic integro-differential
equation describing the energy given to atomic motion by nuclear
recoils in pure crystals, when a constant binding energy is considered.

@ Measurements of QF in Ge detectors are well described by our model.

@ In the case of Si, the QF measurements are well described by our
model if the binding energy is in the range 100-250 eV, where this is
consistent with DAMIC data estimate (cutoff of ~ 0.3 keV).

@ The predicted cutoff for Si is much larger than the Frenkel
(dislocation) energy of about 36 eV, and therefore also greater than
the physical cutoff.

© This model can be extended considering energy variable binding
energy and modify expression for S, for low energies. Work in
progress.
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