Progress on d*(2380) in a chiral SU(3) quark model

Fei HUANG

University of Chinese Academy of Sciences, Beijing, China

2021.07.26, Hadron 2021

Outline

Introduction

- Experimental status of d*(2380)
- Theoretical predictions
- The chiral SU(3) quark model
- Previous calculations and results
- Problems and results from new calculations

Summary

Experiments @ COSY

WASA-at-COSY, PRL 106 (2011) 242302

Signals in other reactions @ COSY

Evidence from np scattering

WASA-at-COSY & SAID DAC, PRL 112 (2014) 202301

 $\vec{d}p \rightarrow np + p_{spectator}$ M = (2380±10) - *i* (40±5)

Colored lines: new fits with the inclusion of new data (red symbols)

Experiment @ ELPH

Experiments @ MAMI

Observation of an anomalous structure in proton polarization from Deuteron Photodisintegration, T. Kamae et al, PRL 38 (1977) 468

Signatures of the d^{*}(2380) hexaquark in $d(\gamma, p\vec{n})$, A2-at-MAMI, PRL 124 (2020) 132001

d*(2380) from lattice QCD

d*(2380) dibaryon from lattice QCD, HAL QCD Collaboration, Phys. Lett. B 811, 135935 (2020).

Abstract

The $\Delta\Delta$ dibaryon resonance $d^*(2380)$ with $(J^P, I) = (3^+, 0)$ is studied theoretically on the basis of the 3-flavor lattice QCD simulation with heavy pion masses $(m_{\pi} = 679, 841 \text{ and } 1018 \text{ MeV})$. By using the HAL QCD method, the central Δ - Δ potential in the 7S_3 channel is obtained from the lattice data with the lattice spacing $a \simeq 0.121$ fm and the lattice size $L \simeq 3.87$ fm. The resultant potential shows a strong short-range attraction, so that a quasi-bound state corresponding to $d^*(2380)$ is formed with the binding energy 25-40 MeV below the $\Delta\Delta$ threshold for the heavy pion masses. The tensor part of the transition potential from $\Delta\Delta$ to NN is also extracted to investigate the coupling strength between the S-wave $\Delta\Delta$ system with $J^P = 3^+$ and the D-wave NN system. Although the transition potential is strong at short distances, the decay width of $d^*(2380)$ to NN in the D-wave is kinematically suppressed, which justifies our single-channel analysis at the range of the pion mass explored in this study.

Keywords: Lattice QCD, Decuplet baryons, ABC effect, $d^*(2380)$

Unusual narrow width of d*

2464 ΔΔ 2380 **d*** 2309 ΔΝπ 2154 ΝΝππ

NN

1878

 $M_{d*} \approx 2380 \text{ MeV} \\ \approx 2M_{\Delta} - 84 \text{ MeV} \\ > M_{\Delta N\pi} \\ > M_{NN\pi\pi} \\ > M_{NN}$

 $\Gamma_{\Delta} \approx 115 \text{ MeV}$

Γ_{d*} ≈ 70 MeV < 1/3 × 2Γ_Δ

Theoretical $\Delta\Delta$ binding energies

The Chiral SU(3) quark model

SU(2) linear
$$\sigma$$
 modelChiral SU(3) quark model $\Sigma = \sigma + i \sum_{a=1}^{3} \tau_a \pi_a$ $\Sigma = \sum_{a=0}^{8} \lambda_a \sigma_a + i \sum_{a=0}^{8} \lambda_a \pi_a$ $\mathcal{L}_I^{ch} = -g \left(\overline{\psi}_L \Sigma \psi_R + \overline{\psi}_R \Sigma^{\dagger} \psi_L \right)$ $\mathcal{L}_I^{ch} = -g \left(\overline{\psi}_L \Sigma \psi_R + \overline{\psi}_R \Sigma^{\dagger} \psi_L \right)$ $= -g \overline{\psi} \left(\sigma + i \gamma_5 \sum_{a=1}^{3} \tau_a \pi_a \right) \psi$ $= -g \overline{\psi} \left(\sum_{a=0}^{8} \lambda_a \sigma_a + i \gamma_5 \sum_{a=0}^{8} \lambda_a \pi_a \right) \psi$

- Chiral symmetry restored by introducing S & PS fields
- CQ obtains constituent mass via spontaneous CSB
- GB gets mass via explicit CSB caused by tiny current quark mass

Chiral SU(3) QM: Hamiltonian

$$H = \sum_{i} \left(m_{i} + \frac{\vec{P}_{i}^{2}}{2m_{i}} \right) - T_{cm} + \sum_{i < j} \left[V_{ij}^{conf} + V_{ij}^{OGE} + \sum_{a=0}^{8} \left(V_{ij}^{\sigma_{a}} + V_{ij}^{\pi_{a}} \right) \right]$$

$$V_{ij}^{OGE} = \frac{g_{i}g_{j}}{4} \left(\lambda_{i}^{c} \cdot \lambda_{j}^{c} \right) \left\{ \frac{1}{r_{ij}} - \frac{\pi}{2} \delta\left(r_{ij} \right) \left[\frac{1}{m_{i}^{2}} + \frac{1}{m_{j}^{2}} + \frac{4}{3} \frac{\sigma_{i} \cdot \sigma_{j}}{m_{i}m_{j}} \right] \right\} + V_{ls}^{OGE} + V_{ten}^{OGE}$$

$$V_{ij}^{conf} = \begin{cases} -\left(\lambda_{i}^{c} \cdot \lambda_{j}^{c} \right) \left(a_{ij}^{c} r_{ij}^{2} + a_{ij}^{c0} \right) \\ -\left(\lambda_{i}^{c} \cdot \lambda_{j}^{c} \right) \left(a_{ij}^{c} r_{ij} + a_{ij}^{c0} \right) \end{cases} \quad Y(x) = \frac{e^{-x}}{x}$$

$$V_{ij}^{\sigma_{a}} = -\frac{g_{ch}^{2}}{4\pi} \frac{\Lambda^{2} m_{a}}{\Lambda^{2} - m_{a}^{2}} \left[Y\left(m_{a} r_{ij} \right) - \frac{\Lambda}{m_{a}} Y\left(\Lambda r_{ij} \right) \right] \left(\lambda_{i}^{a} \lambda_{j}^{a} \right) + V_{ls}^{\sigma_{a}}$$

$$V_{ij}^{\pi_{a}} = \frac{g_{ch}^{2}}{4\pi} \frac{\Lambda^{2}}{\Lambda^{2} - m_{a}^{2}} \frac{m_{a}^{3}}{12m_{i}m_{j}} \left[Y\left(m_{a} r_{ij} \right) - \left(\frac{\Lambda}{m_{a}} \right)^{3} Y\left(\Lambda r_{ij} \right) \right] \left(\sigma_{i} \cdot \sigma_{j} \lambda_{i}^{a} \lambda_{j}^{a} \right) + V_{ten}^{\pi_{a}}$$

Chiral SU(3) QM: Wave functions

Spatial wave function for a single baryon:

$$\psi_{B} = \prod_{i=1}^{3} \left(\frac{1}{\pi b_{i}^{2}} \right)^{3/4} \exp \left[-\frac{r_{i}^{2}}{2b_{i}^{2}} \right] = \psi_{\text{int}} \left(\xi_{1}, \xi_{2} \right) \psi_{3q} \left(R_{\text{cm}} \right)$$

Wave function for a two-baryon system:

$$\psi_{BB} = \mathcal{A} \Big[\hat{\phi}_{int} \left(\xi_{1}, \xi_{2} \right) \, \hat{\phi}_{int} \left(\xi_{3}, \xi_{4} \right) \, \chi(r) \, \psi_{6q} \left(R_{cm} \right) \Big]_{ST}$$
$$\mathcal{A} = 1 - 9P_{36}$$
$$\delta \psi_{BB} \Big| H - E \Big| \psi_{BB} \Big\rangle = 0 \quad \rightarrow \quad \begin{cases} \chi(r) \\ binding \, energy / \, phase \, shifts \end{cases}$$

Model parameters

- > Input: $m_u = m_d = 313$ MeV, $b_u = 0.5$ fm
- Coupling between quark & chiral fields:

$$\frac{g_{\rm ch}^2}{4\pi} = \left(\frac{3}{5}\right)^2 \frac{g_{NN\pi}^2}{4\pi} \frac{m_u^2}{m_N^2}, \qquad \frac{g_{NN\pi}^2}{4\pi} = 13.67$$

- > Mass of mesons: experimental values except for m_{σ}
- > Coupling constant for OGE: $g_u \propto m_{\Delta} m_N$
- Confinement strength & zero point energy:

$$\frac{\partial m_N}{\partial b_u} = 0, \qquad m_N = 939 \text{ MeV}$$

No free parameters when study $\Delta\Delta$ interaction!

Results from previous calculations

ΔΔ dibaryon structure in chiral SU(3) quark model, X. Q. Yuan, Z. Y. Zhang, Y. W. Yu, & P. N. Shen, Phys. Rev. C 60, 045203 (1999).

TABLE II. Binding energy B and rms \overline{R} of the deltaron $B = -(E_{\text{deltaron}} - 2M_{\Delta}), \ \overline{R} = \sqrt{\langle r^2 \rangle}.$ $\Delta\Delta$ L=0 $CC^{(L=0)}$ $\Delta\Delta$ CC +2 $\Delta\Delta(L=0)$ 29.9 42.0 B (MeV)29.8 41.00.92 0.92 0.87 0.87 OGE \overline{R} (fm) 30-60 68.6 B (MeV) 62.6 50.2 40-80 79.7 0.86 0.87 0.84 0.83 $OGE + \pi, \sigma$ \overline{R} (fm) 22.5 B (MeV) 31.7 37.318.4 OGE + SU(3)1.01 1.00 0.92 0.92 \overline{R} (fm)

 $\Delta: I = 3/2, C = (00)$ • $E_{bind}: 40 \sim 80 \text{ MeV}$ C: I = 1/2, C = (11) • CC: 10 ~ 20 MeV increase in E_{bind}

Components of CC in d*

Analysis of the wave functions based on: Phys. Rev. C 60, 045203 (1999)

	$\Delta\Delta-\mathrm{CC}\left(L=0,2 ight)$		
	SU(3)	Ext. $SU(3)$	Ext. $SU(3)$
	10127A	(f/g=0)	(f/g=2/3)
B (MeV)	47.27	83.95	70.25
RMS (fm)	0.88	0.76	0.78
$(\Delta\Delta)_{L=0}~(\%)$	33.11	31.22	32.51
$(\Delta\Delta)_{L=2}~(\%)$	0.62	0.45	0.51
$(CC)_{L=0}$ (%)	66.25	68.33	66.98
$(CC)_{L=2}$ (%)	0.02	0.00	0.00

d* has a CC fraction of about 2/3!

A pure hexaquark state:
$$[6]_{orb} [33]_{IS=03} = \sqrt{\frac{1}{5}} |\Delta\Delta\rangle_{IS=03} + \sqrt{\frac{4}{5}} |CC\rangle_{IS=03}$$

2/3 is close to 4/5 \rightarrow d^{*} is a hexaquark-dominated exotic state!

Partial decay widths: 2π-decay

	Theor. (MeV)	Expt. (MeV)
$d^* ightarrow d\pi^+\pi^-$	16.8	16.7
$d^* ightarrow d\pi^0 \pi^0$	9.2	10.2
$d^* ightarrow pn \pi^+ \pi^-$	20.6	21.8
$d^* ightarrow pn \pi^0 \pi^0$	9.6	8.7
$d^* o pp \pi^0 \pi^-$	3.5	4.4
$d^* ightarrow nn \pi^0 \pi^+$	3.5	4.4
$d^* \rightarrow pn$	8.7	8.7
Total	71.9	74.9

Partial decay widths: 1π decay

 $\Gamma_{d^* \to NN\pi} \approx 0.67 \text{ MeV}$ $\frac{\Gamma_{d^* \to NN\pi}}{\Gamma} \approx 0.9\%$ Expt.: < 9%

Problem in earlier QM calculations

$$\psi_B = \prod_{i=1}^3 \left(\frac{1}{\pi b_i^2}\right)^{3/4} \exp\left[-\frac{r_i^2}{2b_i^2}\right] \qquad b_u = 0.5$$

- Problem: why different baryons have the same size?
- Consequence:
 - The wave function of a single baryon is not the solution of the given Hamiltonian
 - When study BB interactions, non-physical channels might be needed to change the internal wave functions of single baryons
 - → Be careful in explaining the structure of bound BB states!

Solving the inconsistency problem

Nucleon-nucleon interaction in a chiral SU(3) quark model revisited, F. Huang & W.L. Wang, Phys. Rev. D 98, 074018 (2018).

Determine b_u for each baryon by variation principle:

$$\frac{\partial}{\partial b_{\mu}} \langle \psi_{B} | H | \psi_{B} \rangle = 0$$

The size parameters for decuplet baryons are much larger than those for octet baryons!

> $b_u \approx 0.47 \text{ fm for N}$ $b_u \approx 0.64 \text{ fm for } \Delta$

New results for NN interaction

Nucleon-nucleon interaction in a chiral SU(3) quark model revisited, F. Huang & W.L. Wang, Phys. Rev. D 98, 074018 (2018).

New results for NN interaction

Nucleon-nucleon interaction in a chiral SU(3) quark model revisited, F. Huang & W.L. Wang, Phys. Rev. D 98, 074018 (2018).

New results for $\Delta\Delta$ -CC

	Previous calculation $(b_u = 0.5 \text{ for N, } \Delta)$	New calculation $(b_u = 0.47, 0.64 \text{ for N, }\Delta)$
$\Delta\Delta (L = 0 + 2)$	$E_{\rm bind}$ = 23 MeV	$E_{\rm bind}$ = 18 MeV
$\Delta\Delta + CC$ $(L = 0 + 2)$	$E_{\rm bind}$ = 37 MeV	$E_{\rm bind}$ = 21 MeV

Single baryons and two-baryon systems treated consistently in new calculation:

- > Binding energy of $\Delta\Delta$ +CC largely reduced
- Effects of CC much less important

Narrow Γ_{d^*} not yet been understood !

Summary

 d*(2380) reported by WASA-at-COSY with an unusual narrow width (Γ ≈ 70 MeV)

Previous chiral SU(3) QM calculation: b_u = 0.5 for N, Δ
 binding energy of ΔΔ+CC qualitatively consistent with M_{d*}
 > large CC components explains the narrow Γ_{d*}

• Updated calculation: B and BB treated consistently > binding energy of $\Delta\Delta$ +CC largely reduced > Effects of CC much less important \Rightarrow narrow Γ_{d^*} still

difficult to understand

• d*(2380) not yet been well understood in quark model!