Light Meson Spectroscopy at **BES**II

Shuangshi Fang

(for BESIII Collaboration)

Institute of High Energy Physics

Hadron2021, July 26—July 31, 2021 Mexico

OUTLINE

- Why light hadron physics
- Progresses at BESIII
 - Scalar, tensor and pseudoscalar mesons
 - Exotics searches
 - Strange mesons and strangeonia states

Summary

Why light hadron physics?

"That [intermediate distance] scale is the richest phenomenologically, and is certainly the crux region to understand...what QCD is really about. And at the heart of the subject is the hadron spectrum, in particular the spectrum built from light quarks. (...) Without question, there is a great need... for a new round of experiments,..." James D. Bjorken (2000)

QCD degrees of freedom at low energy
 Understanding of the quark and gluon confinement
 Particles beyond the QM

Bird view of BEPCII

Storage ring

Linac

BESIII at BEPCII

BES physics

- Charmonium(-like) physics
- Light hadron spectroscopy
- Charm physics
- τ physics

BEPCII storage rings

Beam energy: 1.0-2.3 GeV Design Luminosity: 1×10^{33} cm⁻²s⁻¹ (achieved on 5th April,2016) Optimum energy: 1.89 GeV Energy spread: 5.16×10^{-4} No. of bunches: 93 Bunch length: 1.5 cm Total current: 0.91 A Circumference : 237m

NIM A614, 345 (2010)

The BESIII Detector

Data samples at BESIII

ψ (3686) events

J/ψ events

BESIII: 450 million

BESIII: 10 billion

About $f_0(1500)$ and $f_0(1710)$

- Clearly observed in J/ψ radiative decays
- Production rate of $f_0(1500)$ in J/ψ radiative decays is lower than that of $f_0(1710)$

 $B(J/\psi \to \gamma f_0(1500) \sim 3 \times 10^{-4})$ $B(J/\psi \to \gamma f_0(1710) > 1.9 \times 10^{-3})$

 f₀(1710) has stronger coupling to gluons than f₀(1500) → which one contains more glueball content?

PWA of $J/\psi \rightarrow \gamma \phi \phi$

Phys. I	Rev. D.	93, 1	12011	(2016)
---------	---------	-------	-------	--------

2500							
NO 2000	1.3	B J/ψ	• 0 ⁻⁺	model independent model dependent	Resonance	$M(MeV/c^2)$	$\Gamma({ m MeV}/c^2)$
€2000	- 	≜[#] ∔ ^{\$} ,	• 0 ⁺⁺	model independent model dependent	$\eta(2225)$	$2216^{+4}_{-5}{}^{+21}_{-11}$	$185^{+12}_{-14}{}^{+43}_{-17}$
ລ ໃສ່ 1500	-	, <u>'</u>	2** 2**	model independent model dependent	$\eta(2100)$	$2050^{+30}_{-24}{}^{+75}_{-26}$	$250^{+36}_{-30}{}^{+181}_{-164}$
St coo	-	•	[™] *!€		X(2500)	$2470^{+15+101}_{-19-23}$	230^{+64+56}_{-35-33}
.jtri		, P	· · · •	****	$f_0(2100)$	2101	224
ய் 500	-	نې د د د	*****	****	$f_2(2010)$	2011	202
0	<mark></mark> ****		۰۰۰ <u>والد ال</u> واقيو _ا	****	$f_2(2300)$	2297	149
4	2	2.2	2.4	2.6	$f_2(2340)$	2339	319
(1	t)		$M(\phi\phi)$	(GeV/c^2)	0^{-+} PHSP		

- Dominant contribution from pseudoscalars
 - n(2225) is confirmed;
 - n(2100) and X(2500) are observed
- The three tensors f₂(2010), f₂(2300) and f₂(2340) stated in p⁻p reactions are also observed

O⁺ : experimental results saturated

- f_0 (1710) $/f_0$ (1790) , one or two
- Large production rate of f₀(2100) in gluon rich environment ppbar annihilations and J/psi radiative decays

2⁺: complicated situation around 2 GeV

X(18??) between 1.8~1.9 GeV

Are they the same state? It is crucial to understand their connections.

Latest result on X(1835)

Existence of a structure strongly coupling to p p?

First observation of X(2370) \rightarrow KK η'

EPJC80,746(2021)

 $\hfill\square$ Simultaneously fit for two different η' decay modes

What is X(2370) ? Candidate of pseudoscalar glueball?
 Lattice QCD predictions

L.-C. Gui et al. Phys. Rev. D 100, 054511 (2019)

Where is the glueball?

At BESIII

- $f_0(1710)$ and $f_0(2100)$ are observed in $J/\psi \rightarrow \gamma \eta \eta, \gamma \pi^0 \pi^0$
- $f_2(2340)$ is observed in $J/\psi \rightarrow \gamma \eta \eta / \phi \phi$ $/\pi^0 \pi^0$

X(2120) and X(2370) in of $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$

Systematic studies needed

•
$$J/\psi \rightarrow \gamma \eta \eta'$$

- $J/\psi \to \gamma \eta' \eta'$
- $J/\psi \to \phi X, \omega X$

Search exotics in $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$

Strangeonia spectrum

φ(2170) at BESIII

 $\mathbf{J/\psi} \to \phi \eta \eta'$

Events/(20MeV/c²)

 $e^+e^- \rightarrow \phi \eta'$

Comparisons

Theorists explain $\phi(2170)$ as

- ✓ ssg hybrid
- $\checkmark 2^{3}D_{1} \text{ or } 3^{3}S_{1} s\bar{s}$
- ✓ tetraquark
- \checkmark molecular state $\Lambda\overline{\Lambda}$
- $\checkmark \phi f_0(980)$ resonance with FSI See Lei Xia's talk for details
- ✓ Three body system **φ**KK

The nature of $\phi(2170)$ still not fully understand !

PWA of $J/\psi \rightarrow K^+K^-\pi^0$

Phys. Rev. D100,032004(2019)

☐ The dominant contribution is from K*(892)

□ First observation of $K^*_2(1980)$ and $K^*_4(2045)$ in J/ψ decays

D Two broad 1⁻⁻ structures were observed in K⁺K⁻ mass spectrum, Possibly contributed from $\omega(1650)$ and $\rho(2150)$

PWA of $\psi(3686) \rightarrow KK\eta$

Phys. Rev. D101,032008(2020)

Observation of both (1680) and X(1750) implies X(1750) is a new structure

□ A broad structure around 2.2 GeV is observed, either ϕ (2170) or ρ (2150)?

No evident structure observed in $\phi\pi$ mass spectra

Summary& Prospects

- Rich physics in light hadrons
 - Light hadron spectroscopy → Quark model
 Light hadron decays → QCD

- 10 billion J/ ψ events available at BESIII !
 - A unique opportunity to map the light hadron spectroscopy
- More surprises at BESIII !