J/ψ radiative decays and the glueball candidates

CHARTERED 1693

Arkaitz Rodas

Table of Contents

1 Introduction

1.1 Motivation 1.2 Data

2 First principles 2.1 Model

3 Results

3.1 Problems3.2 2-channel3.3 3-channel3.4 Spectroscopy and dispersion relations

The scalar sector

• Many of them are not ordinary $q\bar{q}$

 $\hfill \label{eq:constraint}$ The isoscalars-scalars \rightarrow vacuum quantum numbers

1909.07306 9901004

- $f_0(1710) \rightarrow$ supernumerous state?
- Lightest glueball (0^{++}) candidate is expected below 2 GeV

Many of these are poorly determined

• Heavier \rightarrow even worse

	Mass (MeV)	Width (MeV)	$\mathscr{B}(f o \pi\pi)$	$\mathscr{B}(f \to K\bar{K})$	$\mathscr{B}(f \to 4\pi)$	Summary Table
$f_0(1370)$	1200 - 1500	300 - 500	< 0.1	0.35 ± 0.13	> 0.72	Yes
$f_0(1500)$	1506 ± 6	112 ± 9	0.345 ± 0.022	0.085 ± 0.010	0.489 ± 0.033	Yes
$f_0(1710)$	1704 ± 12	123 ± 18	$0.039^{+0.03}_{-0.024}$	0.36 ± 0.12	-	Yes
$f_0(2020)$	1992 ± 16	442 ± 60	-	-	-	No
$f_0(2200)$	2187 ± 14	207 ± 40	-	-	-	No
$f_2(1270)$	1275.5 ± 0.8	$186.7^{+2.2}_{-2.5}$	$0.842^{+0.029}_{-0.009}$	$0.046^{+0.5}_{-0.4}$	$0.104^{+0.016}_{-0.037}$	Yes
$f_2(1430)$	≈ 1430	-	-	-	-	No
$f_2'(1525)$	1517.4 ± 2.5	86 ± 5	$(8.3 \pm 1.6) \times 10^{-3}$	0.876 ± 0.022	-	Yes
$f_2(1565)$	1542 ± 19	122 ± 13	_	-		No
$f_2(1640)$	1639 ± 6	99^{+60}_{-40}	_	-	-	No
$f_2(1810)$	1815 ± 12	197 ± 22	$0.21^{+0.02}_{-0.03}$	$0.003^{+0.019}_{-0.002}$	-1~	No
$f_2(1910)$	1900 ± 9	167 ± 21	-	-		No
$f_2(1950)$	1936 ± 12	464 ± 24	-	- 1	- 14 K	Yes
$f_2(2010)$	2011^{+62}_{-76}	202^{+67}_{-62}	_]		Yes
$f_2(2150)$	2157 ± 12	152 ± 30	-	-	CH-6	No
$f_2(2300)$	2297 ± 28	149 ± 41	-	<u> </u>	1.A-I	Yes

Data: **BESIII**

- Data from BESIII $J/\psi
 ightarrow \gamma(\pi_0\pi_0)\,(K_sK_s)$ BESIII (1506.00546, 1808.06946)
- Data on both S and D-wave 3 multipoles

Table of Contents

1 Introduction

1.1 Motivation
 1.2 Data

2 First principles 2.1 Model

3 Results

- 3.1 Problems
- 3.2 2-channel
- 3.3 3-channel
- 3.4 Spectroscopy and dispersion relations

S-matrix principles: Unitarity

- UNITARITY \Leftrightarrow probability $\sum |\langle f|S|i\rangle|^2 = 1$
- Both right and left branch cuts $SS^{\dagger} = I \Rightarrow F F^{\dagger} = iFF^{\dagger}$.
- Elastic unitarity $\rightarrow S^{II}(z) = \frac{1}{S^{I}(z)}$
- Zero of $S^{I}(z) \rightarrow$ pole of $S^{II}(z)$

S-matrix principles: Analiticity and Crossing

- CAUSALITY⇔ANALITICITY
- No poles in the first sheet

$$F(s,t) = \frac{1}{\pi} \int_{s_{th}}^{\infty} ds' \frac{\operatorname{Im} F(s',t)}{s'-s} + LHC$$

- $\hfill Structures \rightarrow$ unitarity, bound states, cusp
- Together with CROSSING → Mandelstam analyticity

- 2.1 Model • Production \Rightarrow factorization of the photon \Rightarrow $Ima(s) = \rho(s)t^*(s)a(s)$.
- Amplitude $t(s) = \frac{N(s)}{D(s)} \Rightarrow a(s) = E_{\gamma} p^J \frac{n(s)}{D(s)}$.
- Numerators are smooth polynomials $n(s) = \sum_{i} a_{i} T_{i}(\boldsymbol{\omega}(s))$
 - 2. $\omega(s)_2 = 2 \frac{s s_{\min}}{s_{\max} s_{\min}} 1$ 3. $\omega(s)_3 = 2 \frac{\omega(s)_1 - \omega(s_{\min})_1}{\omega(s_{\min})_1 - \omega(s_{\max})_1} - 1$
- K-matrix approach with dispersive phase space.

$$\mathcal{D}^{J}(s)_{ki} = (K^{J}(s)^{-1})_{ki} - \frac{s}{\pi} \int_{s_{k}}^{\infty} ds' \frac{\rho(s')N_{ki}^{J}(s')}{s'(s'-s-i\varepsilon)}.$$

$$\rho N_{ki}^{J}(s')_{\text{nominal}} = \delta_{ki} \frac{(2p_{i})^{2J+1}}{(s'+s_{L})^{2J+\alpha}}, \qquad \rho N_{ki}^{J}(s')_{Q-\text{model}} = \delta_{ki} \frac{Q_{J}(z_{s'})}{2p_{i}^{2}}$$

$$J/\psi$$
 π, K π, K π, \bar{K}

1. $\omega(s)_1 = \frac{s}{s+s_0}$.

2 First prin

2.1 Model

Hunting the $\pi_1(1600)$

Phys.Rev.Lett. 122 042002

- We use an average of 6 parameters for each figure.
- $\chi^2 \approx 1.3$, no significant deviation for any partial wave.
- 1 T-matrix pole produces 2 different peaks for the P-wave \rightarrow 300 MeV distance.

Hunting the $\pi_1(1600)$

- Most robust extraction of this hybrid candidate.
- Theoretical predictions and experiment reconciled.
- $\hfill \label{eq:statistical}$ Statistical uncertainties \rightarrow 100k sample bootstrap.

Poles	Mass (MeV)	Width (MeV)
$a_2(1320)$	$1306.0 \pm 0.8 \pm 1.3$	$114.4 \pm 1.6 \pm 0.0$
$a_2'(1700)$	$1722 \pm 15 \pm 67$	$247\pm17\pm63$
$\pi_1(1600)$	$1564 \pm 24 \pm 86$	$492\pm54\pm102$

Phys.Rev.Lett. 122 042002

 Systematics (diferent LHC, numerators, subtractions ...) included.

Table of Contents

1 Introduction

1.1 Motivation
 1.2 Data

2 First principles 2.1 Model

3 Results

- 3.1 Problems
- 3.2 2-channel
- 3.3 3-channel

3.4 Spectroscopy and dispersion relations

Data problems

Data on both S and D-wave 3 multipoles

• 2 ambiguous solutions

 π, K

 ω, K

 J/ψ

Data Problems

- BESIII and $\pi\pi$ scattering disagree $o \chi^2 \sim 7\sigma$

- Multiple resonances \rightarrow more than 10 different decay channels
- Only control \rightarrow two body
- One of the solutions seems disfavored
- We fit solution I > 1 GeV

- $\hfill \hfill Not terrible \to$ room for improvement
- Not quite the same within systematics

•
$$\chi^2_{2-channel} \sim 2$$
 vs $\chi^2_{3-channel} \sim 1.2$

2-channel fits

- $\hfill \ensuremath{\,\bullet\)}$ Not terrible \rightarrow room for improvement
- Possible contribution from other channels $\rightarrow 4\pi$?

• ho
ho
ightarrow 3rd channel

- Starting from best 2-channel
- Up ~ 30 different systematics, thousands of trials
- Better description an consistency $\chi^2_{3-channel} \sim 1.2$

- Starting from best 2-channel
- Up ~ 30 different systematics, thousands of trials
- Better description an consistency $\chi^2_{3-channel} \sim 1.2$

- $\hfill \hfill Not terrible \to$ room for improvement
- Possible contribution from other channels $\rightarrow 4\pi$?

- $\hfill \label{eq:linear}$ Not terrible \rightarrow room for improvement
- Possible contribution from other channels $\rightarrow 4\pi$?

3-channel fits

• 16 selected fits with different parameterizations $\chi^2 \sim 1.1 - 1.2$

- \blacksquare Statistics \rightarrow Bootstrapping \sim 10k samples
- Negative intensities? $\rightarrow \Gamma$ distribution

- "Only" 7 resonances
- No evidence for $\rightarrow f_0(1370)$

Couplings: D-wave

- Ordinary resonances
- f_2, f_2' decay almost elastic to $\pi\pi, K\bar{K}$
- $\mathscr{B}_{f_2(1270) \to \pi\pi} = 80 \pm 5\%$
- $\mathscr{B}_{f_2'(1525)\to\pi\pi}\sim 6\pm 6\%$

Production residues do not offer new information

Couplings: *S*-wave

- Much richer decay modes \rightarrow scattering couplings not well constrained
- 4π non negligible for several fits ightarrow systematic spread

Summary

- = J/ψ radiative decay analysis with BESIII data
- Both S and D wave required
- Up to 7 resonances
 - 1. 4 scalars
 - 2. 3 tensors
- Tensors \rightarrow ordinary behavior
- $f_0(1710)$ couples more than $f_0(1500)$

Spare slides!

Branching ratios

