Quarkonium anisotropic flow and nuclear modification factor in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV with ALICE

Alexandra Neagu on behalf of the ALICE collaboration University of Oslo

Quarkonium production in heavy-ion collisions

Heavy quarks (charm and beauty) in the Quark–Gluon Plasma (QGP):

• Produced early in the collision, through **hard partonic scatterings** \rightarrow experience the entire evolution of the system

Quarkonium production:

- Probe in-medium QCD force (de-confinement)
- Medium transport properties
- Suppression due to color screening and medium-induced dissociation Matsui and Satz, PLB 178 (1986) 416
- At LHC energies: large $c\bar{c}$ pairs production \rightarrow stronger regeneration effects

Lafferty, Rothkoph PRD 101 (2020) 056010

Braun-Munzinger, Stachel, PLB 490 (2000) 196, Braun-Munzinger, Stachel, Nature 448 (2007) 302 Thews, Schroedler, Rafelski, PRC 63 (2001) 054905

28/07/2021

ALICE (A Large Ion Collider Experiment)

• Inclusive J/ ψ measurements down to $p_{\rm T}=0$

28/07/2021

• Separation of **prompt** and **non-prompt** J/ψ (proxy for open beauty hadrons) Int. J. Mod. Phys. A 29 (2014) 1430044

ALICE (A Large Ion Collider Experiment)

Charmonium

J/ψ nuclear modification factor

• Medium effects are quantified via the **nuclear modification factor** R_{AA}:

$$R_{AA} = \frac{1}{\langle N_{coll} \rangle} \times \frac{(dN/dy)_{AA}}{(dN/dy)_{pp}}$$

$$N_{coll} - number of binary collisions$$

No modification $\rightarrow R_{AA} = 1$ Enhancement $\rightarrow R_{AA} > 1$ Suppression $\rightarrow R_{AA} < 1$

J/ψ nuclear modification factor

• Medium effects are quantified via the **nuclear modification factor** R_{AA}:

$$R_{AA} = \frac{1}{\langle N_{coll} \rangle} \times \frac{(dN/dy)_{AA}}{(dN/dy)_{pp}}$$

$$N_{coll} - \text{number of binary collisions}$$

No modification
$$\rightarrow R_{AA} = 1$$

Enhancement $\rightarrow R_{AA} > 1$
Suppression $\rightarrow R_{AA} < 1$

28/07/2021

- Similar suppression observed at $\sqrt{s_{_{\rm NN}}}$ = 2.76 TeV and 5.02 TeV
- J/ ψR_{AA} larger at LHC than at RHIC despite the much larger energy density

$J/\psi R_{AA}$ vs centrality – comparison to models

Transport Models (TM1, TM2)

• Continuous dissociation and regeneration in QGP and hadronic phase

Du et al., NPA 943 (2015) 147, Zhou et al., PRC 89 (2014) 054911

Statistical Hadronization Model (SHM)

• All charmed particles generated at the chemical freeze-Out Andronic et al., PLB 797 (2019) 134836

Comover interaction model

- Suppression via comovers and J/ψ regeneration Ferreiro, PLB 731 (2014) 57-63
- Agreement with models that implement a certain amount of regeneration

 $R_{\rm AA}$ 2 **ALICE Preliminary** Pb-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 1.5 Inclusive J/w • Data 0-10%, |y|<0.9 Data 0-20%, 2.5<y<4</p> 0.5 0 10 15 0 5 20 $p_{_{T}}$ (GeV/c) ALI-DER-345813

- **Low** p_{T} : J/ ψ suppression strongly depends on rapidity
 - In the regeneration scenario this is explained by higher charm cross section at midrapidity
- **High** $p_{\rm T}$: strong J/ ψ suppression, independent of rapidity and $p_{\rm T}$ up to 20 GeV/*c* (energy loss effects)

28/07/2021

J/ψ **R**

Anisotropic flow

• Initial spatial anisotropy \rightarrow momentum-space anisotropy due to the pressure gradients inside QGP

$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}^{3}p} = \frac{1}{2\pi} \frac{\mathrm{d}^{2}N}{p_{\mathrm{T}}\mathrm{d}p_{\mathrm{T}}\mathrm{d}y} (1 + \sum_{n=1}^{\infty} 2v_{\mathrm{n}}\cos(n(\phi - \Psi_{\mathrm{n}}))) \qquad v_{\mathrm{n}} = \langle \cos(n(\phi - \Psi_{\mathrm{n}})) \rangle$$

- Anisotropic flow quantified via v_n coefficients of Fourier expansion of particle azimuthal distribution
- At low- p_{T} : sensitive to bulk QGP properties
- At high- $p_{\rm T}$: sensitive to in medium energy loss and path length effects

28/07/2021

J/ψ elliptic flow

JHEP 10 (2020) 141 2 ALICE 20–40% Pb–Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 0.2 Inclusive J/ ψ , 2.5 < γ < 4 • V_2 {SP, $|\Delta \eta| > 1.1$ } Syst. (uncorrelated) 0.1 TAMU (X. Du et al.) Inclusive J/ψ Primordial J/ψ -0.12 6 8 10 12 14 16 $p_{_{T}}$ (GeV/c)

Significant positive J/ ψ v₂ up to high $p_{\rm T}$

- **Low** p_{T} (p_{T} < 5 GeV/*c*): Large v_{2} (expected for J/ ψ production via regeneration)
- **High** p_{T} : v_{2} remains high up to 15 GeV/*c*
 - Underestimated by transport model
 - Challenging for models to describe both R_{AA} and v_2 \rightarrow missing mechanism (e.g. energy loss) ?

J/ ψ v₂ results vs **D**-mesons vs π^{\pm}

- Clear mass ordering at **low** $p_{T} (v_{2}^{\pi} > v_{2}^{D} > v_{2}^{J/\psi})$
- $v_2^{\pi} \approx v_2^{D} \approx v_2^{J/\psi}$ at high p_T
 - Constraints for in-medium energy loss models
- v_2 grows from central to semi-central collisions
- Positive $J/\psi v_2$ at midrapidity with 3σ significance
- Measurements of $J/\psi v_2$ at mid- and forward-y are compatible

J/ψ: JHEP 10 (2020) 141

- D: ALICE, PLB 813 (2021) 136054 ; CMS, PRL 120 (2018) 202301
- π: JHEP 1809 (2018) 006

28/07/2021

J/ ψ v₃ results vs **D**-mesons vs π^{\pm}

- Observation of a positive $J/\psi v_3$ at forward-y in both central and semi-central collisions
- Mass hierarchy at low $p_{\rm T}$ also holds for the triangular flow
- v_3 shows weak centrality dependence

J/ψ: JHEP 10 (2020) 141

- D: ALICE, PLB 813 (2021) 136054 ; CMS, PRL 120 (2018) 202301
- **π**: JHEP 1809 (2018) 006

28/07/2021

Constituent-quark scaling

JHEP 10 (2020) 141

• D-meson flow obtained as: $v_{2}^{D}(p_{T}^{D}) \propto v_{2}^{q}(p_{T}^{q}) + v_{2}^{c}(p_{T}^{c})$ $v_2^{u,d}(p_T^q) = v_2^{\pi}(2p_T^q)/2$ $v_{2}^{c}(p_{T}^{c})=v_{2}^{J/\psi}(2p_{T}^{c})/2$ • Need assumption on quark p_{T} sharing: $\rightarrow p_{T}^{q}/p_{T}^{D}=0.2$ $\rightarrow p_{T}^{q}/p_{T}^{D}=0.4$ $\rightarrow p_{T}^{q}/p_{T}^{D}=0.5$

ALI-DER-356371

28/07/2021

- Extension of the quark coalescence picture to describe D-meson flow:
 - Consider two flow components, one for the light and the other for the charm quarks
 - Assumption on the p_{T} sharing between the constituent quarks in D-meson
 - Counter-intuitively, equal or nearly equal p_{T} sharing gives the best agreement

Bottomonium

$\Upsilon(1S) R_{AA} \text{ vs } p_{T}$

- $\Upsilon(1S) R_{AA}$ shows no significant dependence on p_{T}
- In agreement with hydrodynamic and transport model expectations

28/07/2021

$\Upsilon \mathbf{R}_{AA}$ vs centrality

- Stronger suppression towards the most central collisions, in agreement with the model calculations
- $\Upsilon(2S) R_{AA}$ smaller by a factor 3 than $\Upsilon(1S)$

28/07/2021

Υ (1S) elliptic flow

- $\Upsilon(1S) v_2$ compatible with 0, while all the other hadrons have a positive v_2
- $\Upsilon(1S) v_2$ lower with respect to $J/\psi v_2$ in $2 < p_T < 15 \text{ GeV}/c$
- Latest CMS results confirm this measurement PLB 819 (2021) 136385
- In agreement with models predicting little regeneration (TAMU) or not (BBJS)

28/07/2021

Summary

Charmonia

- J/ ψ production predominantly via regeneration at low $p_{_{\rm T}}$
- Strong J/ ψ suppression, independent of rapidity at high $p_{_{\rm T}}$
- $J/\psi v_2$ suggests charm quarks thermalization
- Clear mass hierarchy for both v_2 and v_3 at low p_T
- J/ ψ and D-mesons are consistently described assuming a common underlying charm quark flow

Bottomonia

- Stronger suppression of Υ states in central collisions with $\Upsilon(2S)$ suppressed more than $\Upsilon(1S)$
- No $p_{\rm T}$ dependence of $\Upsilon(1S) R_{\rm AA}$
- $\Upsilon(1S) v_2$ consistent with 0

Backup

$J/\psi R_{AA} vs p_T - comparison to models$

- Data described very well by TM1 over the whole $p_{\rm T}$ and rapidity range
- SHM calculation is used together with a hydrodynamic freezeout parameterization
 - Describes the data qualitatively for $p_{\rm T}$ < 4 GeV/c

28/07/2021

Constituent-quark scaling

HADRON 2021

28/07/2021

- Scaling works for both v₂ and v₃ over the entire p_T range and for all centrality classes
- Supports conclusion on recombination of flowing charmed quarks

