Recent LHCb results on charmonia in the QCD medium

19th International Conference on Hadron Spectroscopy and Structure in memoriam Simon Eidelman

Albert Frithjof Bursche on behalf of the LHCb collaboration

South China Normal University

30th July 2021

<ロ> (四) (四) (三) (三) (三)

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Albert Bursche (South China Normal University)

30th July 2021 2/15

Albert Bursche (South China Normal University)

30th July 2021 3/15

- use charmonium to probe the medium
- use charmonium to probe initial state
- use the medium to learn about the charmonium state itself

 $\psi_{_3}$ (3842)

3---

→ ★ (1) ★

э

글 제 제 글 제

multiplicity-dependent χ_{c1} (3872) and $\psi(2S)$ production

- χ_{c1} (3872) $\rightarrow J/\psi \pi^+\pi^-$
- $\psi(2S) \rightarrow J/\psi \pi^+\pi^-$
- corrected for b-feed-down
- differential in $n_{\text{VeLo tracks}}$
- χ_{c1} (3872) fraction lower at high multiplicity

Theoretical interpretation from: Esposito et al $ar\chi iv: 2006.15044$

 $\sqrt{\mathrm{s}}=8~\mathrm{TeV}$ Phys. Rev. Lett. 126 (2021) 092001

Albert Bursche (South China Normal University)

charmed mesons from ions

LHCb $pp \sqrt{s} = 8 \text{ TeV}$

(日)

30th July 2021 5/15

Albert Bursche (South China Normal University)

30th July 2021 6 / 15

prompt production ratio $\sigma_{\chi_{c1}}/\sigma_{\chi_{c2}}$ in proton lead collisions

- $\chi_{c1}, \chi_{c2} \rightarrow J/\psi \gamma$
- promptly produced
- calorimetric photons and converted photons
- nuclear effects affect χ_{c1} and χ_{c2} in a similar magnitude

Albert Bursche (South China Normal University)

charmed mesons from ions

30th July 2021 7/15

prompt production ratio $\sigma_{\chi_{c1}}/\sigma_{\chi_{c2}}$ in proton lead collisions

•
$$\chi_{c1}, \chi_{c2} \rightarrow J/\psi \gamma (\rightarrow e^- e^+)$$

- promptly produced
- calorimetric photons and converted photons
- nuclear effects affect χ_{c1} and χ_{c2} in a similar magnitude

charmed mesons from ions

prompt production ratio $\sigma_{\chi_{c1}}/\sigma_{\chi_{c2}}$ in proton lead collisions

- promptly produced
- calorimetric photons and converted photons
- nuclear effects affect χ_{c1} and χ_{c2} in a similar magnitude

Albert Bursche (South China Normal University)

double charm production in proton lead collisions

- select pairs of $D^0,\ \overline{D}{}^0,\ D^+,\ D^-,\ D_s^+,\ D_s^-$ and $J\!/\psi$
- sort them into pair production and "DPS" categories $\sigma_{C_1,C_2} = \alpha \frac{\sigma_{C_1} \sigma_{C_2}}{\sigma_{eff}}$ $D^0 D^0 \qquad D^0 J/\psi$ $pPb \qquad 0.99 \pm 0.09 \pm 0.09 \qquad 0.64 \pm 0.10 \pm 0.06$
- Pbp $1.4 \pm 0.11 \pm 0.14$ $0.92 \pm 0.22 \pm 0.06$ $pp_{ex.pol.}$ 4.4 ± 0.5 3.1 ± 0.3
- (all numbers in barn)

 $\sqrt{{
m S_{NN}}}=8.2~{
m TeV}$ Phys. Rev. Lett. 125 (2020) 212001

Albert Bursche (South China Normal University)

- build the double production cross section ratios
- keep one state identical in nominator and denominator
- fragmentation similar to proton collisions

SMOG System for Measuring Overlap with Gas

- Built for a Precise Measurement of the Beam Profiles (Luminosity)
- $\sqrt{s_{NN}} = \mathcal{O}(100 \text{ GeV})$
- LHCb Acceptance becomes Central or Backward
- Injected Helium, Neon and Argon so far

year	Beam 1	Beam 2	SMOG	√ ^s NN	amount
2012	р	р	Ne	87 GeV	< 1h
2013	Рb	p	Ne	54 GeV	< 1h
2015	р	p	He	110 GeV	8 <i>h</i>
2015	p	p	Ne	110 GeV	12h
2015	р	р	Ar	110 GeV	3 <i>d</i>
2015	Рb	p	Ar	69 GeV	few hours
2015	р	Pb	Ar	69 GeV	1.5w
2016	Pb	p	Ar	110 GeV	2 <i>d</i>
2017	р	р	He	110 GeV	10 <i>h</i>
2017	p	р	Ne	110 GeV	20 <i>h</i>
2017	p	p	He	86.6 GeV	170 <i>h</i>
2018	Pb	Pb	He	86.6 GeV	170 <i>h</i>
LUCE a	lata				

30th July 2021 10 / 15

fixed target

charm production in proton helium and proton argon

LHCb

1960 1990 1000 1000 10/

m(K^{*}π⁺) [MeV/c²]

- NLO pOCD

 $\sqrt{s_{NN}}$ [GeV]

s.... = 87 GeV pHe

Candidates / (5 MeV/c²

3(cc) [μb/nucleon]

NLO NROCD

 $\sqrt{s_{NN}}$ [GeV]

 10^{2}

10

10

10

1800 1820 1840

LHCb

This measuremen

• first charm fixed target Candidates / (10 MeV/ c^2) measurement at the LHC LHCb 100 $\sqrt{s_{\text{MW}}} = 87 \text{ GeV } p\text{He}$ • $J/\psi \rightarrow \mu^+\mu^-$, $D^0 \rightarrow K^-\pi^+$ o normalised data available for 3000 3050 3100 3150 3200 pAr at 110 GeV $m(\mu^{+}\mu^{-})$ [MeV/c²] $\sigma(J/\psi)$ [nb/nucleon LHCh • shape is well described This measurem o normalisation is not

$$\sigma_{J/\psi} = 652 \pm 33(stat) \pm 42(syst)nb/A$$

 $\sigma_{D^0} = 80.8 \pm 2.4(stat) \pm 6.3(syst)\mu b/A$
 $\sqrt{s} = 87 \text{ GeV}$ Phys. Rev. Lett. 122 (2019) 132002

Albert Bursche (South China Normal University)

10

30th July 2021 11/15

 10^{2}

fixed target

charm production in proton helium and proton argon

- $J/\psi \rightarrow \mu^+\mu^-$, $D^0 \rightarrow K^-\pi^+$
- o normalised data available for pAr at 110 GeV
- shape is well described
- normalisation is not

$$\sigma_{J/\psi} = 652 \pm 33(stat) \pm 42(syst)nb/A$$

 $\sigma_{D^0} = 80.8 \pm 2.4(stat) \pm 6.3(syst)\mu b/A$
 $\sqrt{s} = 87 \text{ GeV}$ Phys. Rev. Lett. 122 (2019) 132002

Albert Bursche (South China Normal University)

30th July 2021 11/15

gas (He, Ne, Ar)

coherent photonuclear J/ψ production in ultra peripheral lead lead collisions

- first LHCb measurement in lead collisions
- J/ $\psi \rightarrow \mu^+ \mu^-$
- no extra tracks
- veto activity in HeRSCHeL
- mass fit for $J\!/\psi$ yield
- $\log(p_T^2)$ for coherent yield templates from starlight $\sqrt{s_{\rm NN}} = 5~{\rm GeV}$ arXiv:2107.03223

Albert Bursche (South China Normal University)

charmed mesons from ions

LTA.V

____ I TA 3

- IDAAT-CO

· (15. ho - 10)

hole dimensis

Cepila et al.

photonuclear J/ψ production periphereal collisions

- select peripheral events
 - $<\textit{n}_{\rm part}>=19.7\pm9.2$
- similar technique

 $\begin{array}{l} photonuclear \text{ Double sided Crystal} \\ hadronic & \frac{\mathcal{P}_{\Gamma}{}^{n_{1}}}{\left(1+\left(\frac{\mathcal{P}_{\Gamma}}{\rho_{0}}\right)^{n_{2}}\right)^{n_{3}}} \end{array}$

- normalised to min-bias
- compared to W. Zha and S. R. Klein et. al Phys. Rev. C 97, 044910

 $\sqrt{s_{\rm NN}}=5~{\rm GeV}$ LHCb-PAPER-2020-043 in preparation

Albert Bursche (South China Normal University)

charmed mesons from ions

0

0.14

0.04

Backgroun

3050

HCh preliminary

PbPb $\sqrt{s_{viv}} = 5.02 \text{ TeV}$

oto-produced I/w -> uu

No overlap effects

20

.... Overlap effects

3100

^{30&}lt;sup>th</sup> July 2021 13 / 15

LHCb upgrade

- Many interesting upgrades are being installed
- Readout allows for better triggering on hadronic and neutral final states
- New SMOG2 allows for higher gas pressure and better knowledge of this pressure

- Improved granularity will allow tracking in lead lead collisions. The maximal centrality will be pushed from 60% to 30%.
- LHCb will be able to reconstruct oxygen oxygen collisions at full centrality

conclusion

- LHCb can analyse all data LHC can deliver
- Mapping out charmonium production requires large luminosity
- New SMOG2 will increase luminosity and determination thereof
- \bullet With the upgraded LHCb detector will be able to reconstruct events at higher centrality of about 60%

Thank you for your attention!