Dilepton measurement at J-PARC high-momentum beamline

- Activities at new beamline -

M. Naruki (Kyoto Univ.) at Hadron2021 2021/7/30

Outline

- Introduction
 - J-PARC Hadron Facility
 - high momentum beamline
- Current physics program at high-p
 - Dilepton measurement
- Near future activity
 - Baryon spectroscopy
- Summary

High-momentum beamline at J-PARC

branch angle : 5°

at SM1 high-p beam branches off from the primary line

- 30 GeV primary proton (10¹⁰/pulse)
- 8 GeV primary proton for COMET
- secondary particles like π , K up to 20 GeV/c

Beam line specifications

Name	Particles	P _{max}	Intensity	
K1.8	п, К	2.0 GeV/c	10 ⁶ K⁻ ′s	
K1.8BR	п, К	1.1 GeV/c	10 ⁶ K⁻ ′s	
KL	neutral K			
K1.1BR	п, К	0.8 GeV/c	10 ⁶ K⁻ ′s	
High-p	proton	31 GeV/c	10 ¹⁰ p	→ 2020 May~
High-p	п/К	20 GeV/c	10 ⁶ K⁻ ′s	
secondary	(unseparated.)			
K1.1	п, К	1.1 GeV/c	10 ⁶ K⁻ ′s	J

 $\sqrt{s} = 2.2 \text{ GeV} \rightarrow \sqrt{s} = 6.2 \text{ GeV}$ in 20GeV/c π p/Kp reactions

Dilepton measurement

In-medium Spectral Information on Vector Mesons - E16 -

- Explore the world of light quarks
 - determine quark and gluon condensations
 - key symmetry chiral symmetry
- Leptonic probe di-lepton
 - clean signal from complicated hadronic systems
- Next-generation experiment
 - catch up e+/e- pairs produced in 30 GeV p+A interactions
 - w/ J-PARC intense beam & state-of-the-art experimental techniques

P. Gubler and K. Ohtani, Phys. Rev. D 90, 094002 (2014). 1.02

1.01

0.99 0.98

0.97

1.5

 $\rho \left[\rho_0 \right]$

 $m_{\phi}(\rho)/m_{\phi}(0)$

Dilepton measurement at J-PARC (E16)

• φ produced in 30 GeV pA reactions

a^+a^-			
ee		mass	width
	ρ	770	149.2
	ω	782	8.44
	φ	1020	4.26

- systematic studies
 - High statistics

• Ø7

- 10¹⁰ p/spill (2 seconds) x 0.1% targets (C,Cu,Pb)
- high rate capability 100k channel
- High mass resolution $\Delta M = 7 \text{ MeV}$

proton beam

spectrometer

- Tracking devices
 - SSD
 - GEM Tracker (GTR)
- double-stage Electron ID counters
 - Hadron Blind Detector (HBD)
 - Lead-glass calorimeter (LG)

Hadron Blind Detector (HBD)

Csl evaporated GEM (inside the gas chamber)

Lead-glass calorimeter

PbW/O4 crystals

rejection power : 3x10-4

SSD

GEM Tracker)

3 size of GEM

1 module

Expected Signal

Current status

- quality of extracted primary beam
 - xy profiles: as expected
 - global time structure: OK

- detector performance
 - wire successfully reconstructed from SSD & GTR
 - electrons are identified with 2stage PID counter

Schedule

2020-2021 RUN0 – 320 hours, C/Cu targets
 Beamline / Detector commissioning

we are ready

- 2022 RUN1 1280 hours, C/Cu targets
 - Physics run 15k of φ mesons
- 2023~ RUN2 2560 hours, C/Cu/Pb targets
 - nuclear size & velocity dependences

RUN 1 (8 modules)

RUN 2 (26 modules)

Baryon spectroscopy

High-momentum beamline at J-PARC

branch angle : 5°

at SM1 high-p beam branches off from the primary line

- 30 GeV primary proton (10¹⁰/pulse)
- 8 GeV primary proton for COMET
- secondary particles like π , K up to 20 GeV/c

Diquark as key component of hadrons

q LOCD, Nakamura & Saito, PLB621(2005)171

Charm baryon spectroscopy

• λ and ρ motions split in heavy baryons

Multi Purpose Spectrometer

High resolution & Large acceptance spectrometer

- Large acceptance (50% for K* / 60% for D*)
- Detector configuration for high-resolution (dp/p=0.2%)
 - Possible decay mode measurement: $Y_c^* \rightarrow Y_c + \pi$...
- Multi-particle detection in the high rate environment

Expected spectrum: $\sigma(\pi p \rightarrow D^{*-}Yc) = 1$ nb

10M π beam + LH2

N(Yc*)~1000 events/1nb/100 days Sensitivity: ~0.1 nb (3σ, Γ~100 MeV)

E Spectroscopy with kaon beam

- Missing & Invariant Mass Spectroscopy
- 5 GeV/c K- p reaction up to 2.5 GeV E
 - * by K* tagging, threshold momentum for 2.5 GeV
 = production is 5.5 GeV/c.

Yield Estimation
I _K =10 ⁶ /spill
$\sigma = 1 \mu b$
$d\Omega/4\pi = 50\%$
4g/cm ² LH2 target
→ Y ~10 ⁴ /day
$S/N \ge 10$

Lol: **E** Baryon Spectroscopy with High-momentum Secondary Beam

Summary

- At the high-momentum beamline, 30 GeV primary proton beam is now available at J-PARC
- The experiment to measure dilepton spectra has been successfully launched. Beamline/detector commissioning were done, first physics data will be taken in autumn 2022.
- Ξ and charm baryon spectroscopy will be performed with π/K beams at mid-energy region.