Supported in part by

Global polarization of Ξ hyperons in Au+Au collisions in the STAR experiment

Outline:

- Introduction
- Global hyperon polarization
- Motivation
- The STAR experiment
- Hyperon polarization measurements
- Results
- Conclusions

Egor Alpatov (for the STAR Collaboration) National Research Nuclear University MEPhI

Introduction

- The Quark-Gluon Plasma (QGP) formed in non-central nucleus-nucleus collisions is associated with large angular momentum, that leads to <u>vorticity</u> in the medium
- Spin-orbit coupling aligns spin directions of produced particles with the direction of <u>vorticity</u>

Z.-T. Liang and X.-N. Wang, PRL94, 102301 (2005)
 S. A. Voloshin, arXiv:nucl-th/0410089

- Another possible source of particle polarization is <u>magnetic field</u>, created in non-central collisions in the initial stage
 - D. Kharzeev, L. McLerran, and H. Warringa, Nucl.Phys.A803, 227 (2008)
 McLerran and Skokov, Nucl. Phys. A929, 184 (2014)

• In non-central HIC the initial collective longitudinal flow velocity depends on x:

$$\omega_y = \frac{1}{2} (\nabla \times v)_y \approx -\frac{1}{2} \frac{dv_z}{dx}$$

• For small polarization: Becattini, Karpenko, Lisa, Upsal, Voloshin PRC95.054902 (2017)

$$P_{\Lambda} \simeq \frac{1}{2} \frac{\omega}{T} + \frac{\mu_{\Lambda} B}{T}$$

$$P_{\overline{\Lambda}} \simeq \frac{1}{2} \frac{\omega}{T} - \frac{\mu_{\Lambda} B}{T}$$

How to measure global polarization?

- Hyperons are "self-analyzing" due to weak decay properties:
 - Daughter baryons are preferentially emitted along parent spin direction
- Daughter baryons of hyperons with polarization (\vec{P}) follows the distribution:

 $\frac{dN}{dQ^*} = \frac{1}{4\pi} \left(1 + \alpha_H |\vec{P}| \cdot \widehat{p_b^*} \right) = \frac{1}{4\pi} \left(1 + \alpha_H P \cos \theta^* \right)$

- α_H decay parameter, unique for each hyperon species
- $\widehat{p_h^*}$ is the daughter baryon momentum in the parent frame
- Projection to the transverse plane can be measured: $P_{H} = \frac{8}{\pi \alpha_{H}} \frac{\langle sin(\psi_{1} - \varphi_{p}^{*}) \rangle}{Res(\psi_{1})}$

 - ψ_1 is the reaction plane angle
 - ψ_1 and its resolution $Res(\psi_1)$ can be calculated with spectator's signal.
- E global polarization could also be measured via its daughter Λ polarization with transfer factor $C_{\Xi\Lambda} = 0.932$ Egor Alpatov HADRON-2021

Motivation

- Global polarization of Λ hyperons was measured for $\sqrt{s_{NN}} = 7.7-200$ GeV at STAR
- P_H decreases with increasing collision energy
- Difference between P_{\bigwedge} and $P_{\bar{\bigwedge}}$ maybe due to B-field effect
- Theoretical calculations can quantitively explain the energy dependence of the Λ polarization, but many of them fail to explain differential measurements
- Nowadays there is a growing interest to measure the global polarization of other hyperons such as Ξ .
- <u>E polarization may provide new input for</u> global polarization and vorticity studies

Р_н [%]

The STAR experiment

Hyperon reconstruction:

- Time Projection Chamber $|\eta| \in [-1, 1]$
- Time-Of-Flight
 |η| ∈ [-0.9, 0.9]

Event plane angle measurement:

- Beam-Beam Counter
 |η| ∈ [3.3, 5.0]
- Event-Plane Detector $|\eta| \in [2.1, 5.1]$
- Zero Degree Calorimeter $|\eta| > 6.3$

Experimental technique

- Event plane Ψ_1 be measured by detectors at forward rapidity where directed flow is large

$$\Psi_1 = \tan^{-1}\left(\frac{\sum w_i \sin(\phi_i)}{\sum w_i \cos(\phi_i)}\right) \text{, where } w_i \text{ is detector's tile ADC}$$

•
$$Res(\Psi_{1,Forward \eta}) = Res(\Psi_{1,Backward \eta}) = \sqrt{\langle \cos(\Psi_{1,Forward \eta} - \Psi_{1,Backward \eta}) \rangle}$$

- BBC and ZDC for $\sqrt{s_{NN}} = 54.4$ GeV, EPD and BBC for $\sqrt{s_{NN}} = 27$ GeV A. M. Poskanzer, S. A. Voloshin, PRC58.1671(1998)
- Hyperon reconstruction performed via decay topology
- Λ daughters identified via TPC and TOF
- Ξ were reconstructed via $\Xi \to \Lambda + \pi$

Global polarization: event-plane method

- Build invariant mass distribution for each $(\Psi_1 \phi^*)$ bin
- Subtract background and integrate subtracted distribution
- Fit $dN/d(\Psi_1 \phi^*)$ with Fourier function up to 2nd order
- Coefficient for $sin(\Delta \phi^*)$ term is what we're looking for

Results

 Global polarization of Ξ hyperons consistent with model predictions Р_н (%)

- Experimental results for \u00e5 global polarization congruence with each other at different collision energies
- Ξ global polarization, measured via its daughter Λ decays is consisted with direct method
- Ξ and inclusive Λ global polarization are consistent within statistical uncertainties

Conclusions

- We presented first results of $\Xi + \overline{\Xi}$ global polarization measurements in Au+Au collisions at 54.4 GeV
- $\Xi + \overline{\Xi}$ global polarization is comparable to $\Lambda + \overline{\Lambda}$ global polarization within uncertainties
- We are looking forward to continuing this measurements at other energies

Thank you for your attention!