Hypertriton production in large and small systems

Francesco Mazzaschi^{1, 2} on behalf of the ALICE Collaboration HADRON 2021, Mexico City, 30/07/2021

Università degli Studi di Torino¹, INFN Torino²

Hypertriton (³_AH)

- Lightest known hypernucleus
 - bound state of a neutron, a proton and a Λ
 - the measured Λ separation energy B_{Λ} is only 130 ± 50 keV ¹:
 - hypertriton could be approximated as a bound state of a deuteron and a Λ
- Unique probe for understanding the Λ-nucleus interaction, with strong implications for astro-nuclear physics
 - hyperons are expected to be produced in the inner core of neutron stars²

¹D.H. Davis., Nucl. Phys. A 754 (2005) 3-13

²L. Tolos et al., Progress in Particle and Nuclear Physics, 112 (2020)

³ H in ALICE

${}^{3}{}_{A}$ H in large systems (Pb-Pb collisions): lifetime and B_{A}

- ${}^{3}_{\Lambda}$ H expected to be a weakly bound state with a radius of ~ 10 fm ¹
 - small B_{Λ} implies a lifetime close to the free Λ hyperon one
- recent results from STAR suggest that ${}^{3}_{\Lambda}$ H could be more compact than expected ${}^{2, 3}$
 - precise measurements are required to shed light on the ³ AH structure

¹Hildenbrand, F., & Hammer, H.W. (2019). Phys. Rev. C, 100(3), 034002
 ² STAR Collaboration Phys. Rev. C 97, 5, 054909 (2018)
 ³ STAR Collaboration, Nature Physics 16 (2020), 409–412

³ H in ALICE

³ H production in small systems (pp and p-Pb collisions)

- loosely bound nature of ³_AH has strong implications for its production mechanism
 - thermal (SHM) ¹ and coalescence² predictions well separated at low charged-particle multiplicity density
- Studying ³_AH production in pp and p-Pb is a key to understand the nuclear production mechanism in the hot and dense matter

¹Vovchenko, V., Dönigus, B., & Stoecker, H. (2018). *Phys. Lett., B785, 171-174.* ²Sun, K.J., Ko, C., & Dönigus, B. (2019). *Phys. Lett. B, 792, 132–137.*

Hypertriton in large systems Precision measurements of lifetime and B, in Pb-Pb collisions

ALICE

HADRON 2021, Mexico City, 30/07/2021

³ H in large systems

- Analysed data sample:
 - Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}} = 5.02 \text{ TeV}$ collected by ALICE in 2018
- ³_ΛH candidate: ³He + π⁻ pairs
 (and related charge conjugates)
- Secondary vertex reconstruction

 matching of ³He + π⁻ tracks coming from a common vertex
- Huge combinatorial background

³ H selection: machine learning approach

Boosted Decision Trees Classifier (BDT) trained on dedicated sample to discriminate between signal and background candidates

- BDT output (independent trainings for each bin) :
 - Score related to the probability of the candidate to be signal or background

ALI-SIMUL-316844

³ H selection: machine learning approach

Boosted Decision Trees Classifier (BDT) trained on dedicated sample to discriminate between signal and background candidates

- Selection applied on the BDT score
 - maximisation of the expected significance (assuming thermal production)

ALI-SIMUL-316844

Signal extraction

- Signal extracted with a fit to the invariant mass spectrum of the selected candidates
- high significance over a wide range
 - 9 ct bins from 1 to 35 cm

dN/d(*c*t) (cm⁻¹) Corrected ct spectrum fitted with 0³ **ALICE Preliminary** exponential function Pb-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}, 0.90\%$ Lifetime value from the fit 10² Statistical uncertainty ~ 6% 10 Systematic uncertainty (boxes) ~ 7% 10 15 20 25 30 35 *c*t (cm) ALI-PREL-334667

- Most precise measurement available
- Statistical uncertainty lower than the published world average uncertainty
- Models predicting lifetime to be near to the free Λ one are favoured
 - strong hint that hypertriton is weakly bound, but we still need B_{Λ} to finally solve the puzzle

- Same signal extraction and *c*t bins used for the lifetime: precise mass measurement needed to obtain B_A
- Extremely precise measurement
 - o 0.0016% stat.
 - 0.003 syst.
- Systematic uncertainty of ~100 keV

ALI-PREL-486366

• From the mass measurement to B_{Λ}

 $\circ ~~ B_{\Lambda} = M_{\Lambda} + M_{
m d} - M_{_{\Lambda}^3
m H}$

- Weakly bound nature of ³_AH is confirmed by the latest ALICE measurement
 - \circ B_{Λ} consistent with zero
 - consistent with SU(3) chiral effective field theory and Dalitz predictions

ALI-PREL-486370

Hypertriton in small systems First measurements of ³ H production in pp and p-Pb collisions

³ H selection in p-Pb collisions

- Analysed data sample:
 - p-Pb collisions at $\sqrt{s_{_{\rm NN}}} = 5.02$ TeV collected by ALICE in 2016 and 2013
- ${}^{3}_{\Lambda}$ H candidate: 3 He + π^{-} pairs (and related charge conjugates)
- Signal selection using a BDT Classifier
 - fundamental contribution of ML to extract the signal with good significance: 4.6 or

³ H selection in pp collisions

- Analysed data sample:
 - pp collisions at $\sqrt{s} = 13$ TeV collected by ALICE during Run 2
- ${}^{3}_{\Lambda}$ H candidate: 3 He + π^{-} pairs (and related charge conjugates)
- Trigger on high multiplicity events using V0 detectors
- Selection using topological cuts on triggered events

HADRON 2021, Mexico City, 30/07/2021

Entries /

NEW

3 _AH / A in pp and p--Pb collisions

- ${}^{3}_{\Lambda}H / \Lambda$ in small systems:
 - large separation between production models
 - measurements in good agreement with 2-body coalescence ²
 - tension with SHM¹ at low charged-particle multiplicity density
 - configuration with V_C = 3dV/dy is excluded at level of more than 6σ

https://arxiv.org/abs/2107.10627

¹Vovchenko, V., Dönigus, B., & Stoecker, H. (2018). *Phys. Lett., B785, 171-174.* ²Sun, K.J., Ko, C., & Dönigus, B. (2019). *Phys. Lett. B, 792, 132–137.*

S_3 in pp and p--Pb collisions

• S_3 : strangeness population factor

 $(^3_\Lambda {
m H}/^3 {
m He})/(\Lambda/{
m p})$

- S_{3} in small systems:
 - same conclusions as for ${}^{3}_{\Lambda}H / \Lambda$ but with less sensitivity
 - Run 3 will be crucial to finally distinguish between SHM¹ and coalescence²!

https://arxiv.org/abs/2107.10627

¹Vovchenko, V., Dönigus, B., & Stoecker, H. (2018). *Phys. Lett., B785, 171-174.* ²Sun, K.J., Ko, C., & Dönigus, B. (2019). *Phys. Lett. B, 792, 132–137.*

Francesco Mazzaschi

- ${}^{3}_{\Lambda}$ H in large systems:
 - most precise measurements of lifetime and B_{Λ} in Pb-Pb collisions
 - weakly bound nature of ${}^{3}_{\Lambda}$ H confirmed
 - 3-body decay analysis on-going, it will allow us to infer the spin of the particle
- ${}^{3}_{\Lambda}$ H in small systems:
 - \circ first measurement of ${}^3_{\Lambda}$ H production in pp and p-Pb collisions
 - concrete possibility to distinguish with high significance between the two nucleosynthesis mechanisms
 - during Run 3 we will be able to do that!

Thanks for your attention!