# Complementarity of EIC and LHC: TMDs and GPDs

#### Valerio Bertone

IRFU, CEA, Université Paris-Saclay

### UNIVERSITE PARIS-SACLAY





July 30, 2021, Hadron 2021

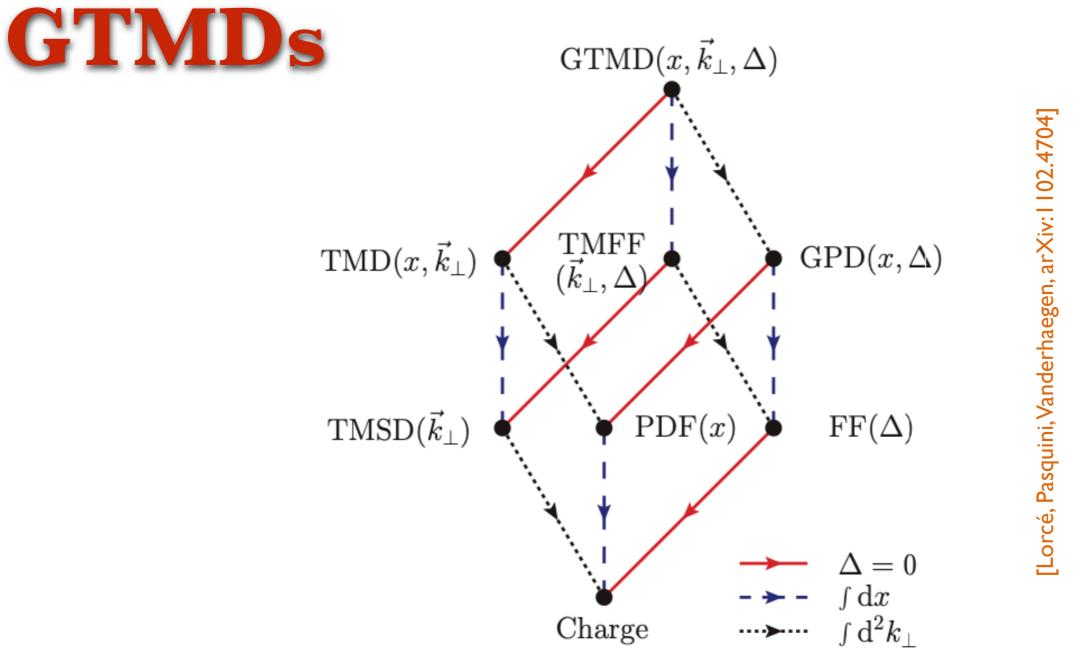
## **TMDs**

### Unpolarised quark TMDs:

- **LHC data** for *Z/W* production extremely important for quark TMD **PDFs**,
- large lever arm in Q allows to probe non-perturbative evolution,
- it is very important to characterise **theoretical uncertainties**:
  - N<sup>3</sup>LL(•) accurate calculations at low  $q_T$  vs. **sub-percent** experimental uncertainties.
  - Fundamental for a faithful extraction of  $M_W$ .
- Can TMD flavour dependence play a role?
- Can other observables, such as  $\varphi^*$ , be used to constrain TMD PDFs?
- The LHC tells us nothing on **TMD FFs**.
- Here the **EIC** comes to rescue:
  - **SIDIS** does depend on FFs (better to measure cross sections or multiplicities?),
  - *wide* **kinematic coverage** (complementary to HERMES, COMPASS, and JLab),
  - Also TMD PDFs are probed in a kinematic region complementary to the LHC (lower x).



### Unpolarised gluon TMD:


- very little is known so far.
- Hard to probe at the **LHC**:
  - *d*ata for **Higgs production in gluon fusion** can say something:
    - how about the impact of the Boer-Mulders (linearly polarised) gluon TMD?
  - **quarkonium** or **jet** production? Factorisation issues at low  $q_{\rm T}$ .
- As a consequence the **EIC** is expected to give a dramatic contribution:
  - **quarkonium** and **jet** production at low  $q_{\rm T}$  are promising channels.
  - The theoretical understanding of quarkonium production in DIS has recently seen a boost.

### **Sivers TMDs**:

- the LHC has very little to say here.
- a handful of datapoint for TSSA from COMPASS/HERMES/Jlab/STAR,
- *match onto the Qiu-Sterman* (twist-3) distributions mostly unknown.
- Again, the **EIC** is expected to have a tremendous impact on the Sivers TMDs.



- The **LHC** does not have a prominent exclusive-physics program:
  - exclusive forward  $J/\psi$  and  $\Upsilon$  production from LHCb sensitive to the gluon GPD,
  - elastic photon production in heavy-ion collisions?
  - The **EIC** is thus crucial to advance our understanding of GPDs.
- Phenomenological extractions of GPDs at the EIC require:
  - evolution effects be included,
  - *Constant of the constant of the second seco*
  - A **multichannel** analysis is required, possibly including data for:
    - timelike Compton scattering,
    - exclusive vector meson-production (how about DAs?),
    - double DVCS (hard to measure experimentally),
    - anything else?



GTMDs are the mother distributions of all one-body distributions:

- in o direct experimental access (?), only through their projections.
- Reduce to TMDs in the forward limit  $\Delta \rightarrow 0$ ,
- reduce to GPDs upon integration over  $k_{\rm T}$  (divergent  $\rightarrow$  collinear evolution).
- Any information on these projections can be translated into information on GTMDs:
  - This requires a model,
  - approaches like the LCWF overlap representation exist to model them.