Status of Meson Spectroscopy in the PDG Hadron 2021 Roundtable July 30, 2021 Ryan Mitchell (Indiana University)

"Unstable Mesons" are curated by the PDG Meson Team:

Simon Eidelman (Novosibirsk) Claude Amsler (Vienna) Michael Doser (CERN) Thomas Gutsche (Tübingen) Christoph Hanhart (Jülich) Juan-Jose Hernández-Rey (Valencia) Carlos Lourenço (CERN) Alberto Masoni (Cagliari) *Ryan Mitchell (Indiana)* Mikhail Mikhasenko (CERN) Sergio Navas (Granada) Claudia Patrignani (Bologna) Stefan Spanier (Tennessee) Graziano Venanzoni (Pisa) Vitaly Vorobyev (Novosibirsk) Philosophy: descriptive vs. prescriptive (generally descriptive)

descriptive: maintain listings and reviews

prescriptive: collect standards (e.g. naming scheme) and best practices (e.g. moving beyond BW parameters)

A few notes:

- 1. Theory papers are being incorporated into the listings.
- 2. The listings are rapidly expanding.
 - \implies sometimes changes are provisional
 - \implies the naming scheme is expanding
 - \implies reviews are undergoing major revisions

Send ideas/feedback/mistakes to anyone on the list or to pdg@lbl.gov

Status of Meson Spectroscopy in the PDG Hadron 2021 Roundtable July 30, 2021 Ryan Mitchell (Indiana University)

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update

 $\pi_1(1600)$

 $I^{G}(J^{PC}) = 1^{-}(1^{-+})$

See the review on "Non- $q\overline{q}$ Mesons" and a note in PDG 06, Journal of Physics **G33** 1 (2006).

$\pi_1(1600)$ T-Matrix Pole \sqrt{s}

VALUE (MeV)	DOCUMENT IL)	TECN	COMMENT
$(1564 \pm 24 \pm 86) - i (246 \pm 27 \pm 51)$	¹ RODAS	19	JPAC	191 $\pi^- p \rightarrow \eta^{(\prime)} \pi^- p$
¹ The coupled-channel analysis	of both the $\eta\pi$ a	nd $\eta' \pi$	systems	using ADOLPH 15 data.

$\pi_1(1600)$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
$1661^+_{-11} 0 \text{UR}$	VERAGE	Error includes so	cale fa	actor of 3	1.2.
$1600 {+} {110 \atop - 60}$	46M	¹ AGHASYAN	18 B	COMP	190 $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p$
$1664 \pm 8 \pm 10$	145k	² LU	05	B852	18 $\pi^- p \rightarrow \omega \pi^- \pi^0 p$
$1709 \pm 24 \pm 41$	69k	³ KUHN	04	B852	18 $\pi^- p \rightarrow \eta \pi^+ \pi^- \pi^- p$
$1597 \pm \ 10 {+45 \atop -10}$		³ IVANOV	01	B852	18 $\pi^- p \rightarrow \eta' \pi^- p$

Claudia Patrignani (Bologna) Stefan Spanier (Tennessee) Graziano Venanzoni (Pisa) Vitaly Vorobyev (Novosibirsk) Philosophy: descriptive vs. prescriptive (generally descriptive)

descriptive: maintain listings and reviews

prescriptive: collect standards (e.g. naming scheme) and best practices (e.g. moving beyond BW parameters)

A few notes:

- 1. Theory papers are being incorporated into the listings.
- 2. The listings are rapidly expanding.
 - \implies sometimes changes are provisional
 - \implies the naming scheme is expanding
 - \implies reviews are undergoing major revisions

Send ideas/feedback/mistakes to anyone on the list or to pdg@lbl.gov

Status of Meson Spectroscopy in the PDG

Hadron 2021 Roundtable

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update

 $f_0(980)$

 $I^{G}(J^{PC}) = 0^{+}(0^{++})$

See the review on "Scalar Mesons below 2 GeV."

$f_0(980)$ T-MATRIX POLE \sqrt{s}

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
• • • We do not use the follow	ving data for averages, fits	s, limits, e	tc. ● ● ●
$(1003 + \frac{5}{27}) - i(21 + \frac{10}{8})$	¹ GARCIA-MAR11	RVUE	Compilation
$(996 \pm 7) - i(25 + 10)$	² GARCIA-MAR11	RVUE	Compilation
$(973^{+}_{-127}) - i(11^{+189}_{-11})$	³ PELAEZ 044	RVUE	$\pi\pi \rightarrow \pi\pi$
¹ Reanalysis of the K_{e4} data	of BATLEY 10C and the	$\pi N \rightarrow \pi$	πN data of HYAMS
GRAYER 74, and PROTOR	OPESCU 73 using Roy e	quations.	

² Reanalysis of the K_{e4} data of BATLEY 10C and the $\pi N \rightarrow \pi \pi N$ data of HYAMS 73, GRAYER 74, and PROTOPOPESCU 73 using GKPY equations.

³Reanalysis of data from PROTOPOPESCU 73, ESTABROOKS 74, GRAYER 74, and COHEN 80 in the unitarized ChPT model.

f₀(980) MASS

VALUE (MeV)	EVTS DOCUMENT	ID TECN	COMMENT
990 ±20 OUR ES	TIMATE		
• • • We do not use t	he following data for aver	ages, fits, limits,	etc. • • •
$992.8\pm~0.8\pm~1.0$	¹ ALBRECH	20 RVUE	$\begin{array}{rcl} 0.9 \ \overline{p} p \rightarrow & \pi^0 \pi^0 \eta, \\ \pi^0 \eta \eta, & \pi^0 K^+ K^- \end{array}$
992.0 $^+$ $^{8.5}_{7.5}\pm$ 8.6	² AAIJ	19н LHCB	$pp \rightarrow D^{\pm}X$
¹ T-matrix pole, 5 pole LONGACRE 86 ($K\overline{K}$) 0.6 ± 1.6 MeV. ² From the $D^{\pm} \rightarrow K^{\pm}$ meson model of AOU	is, 5 channels, including s , BINON 83 ($\eta\eta$), and BIN K^+K^- Dalitz plot fit w DE 18.	scattering data fr ION 84C $(\eta \eta')$. S ith the Triple-M a	from HYAMS 75 $(\pi \pi)$, econd solution 977.8 \pm amplitude in the multi-

Graziano Venanzoni (Pisa) Vitaly Vorobyev (Novosibirsk) [uly 30, 2021 [uly 10, 2021 [ell (Indiana University)

Philosophy: descriptive vs. prescriptive (generally descriptive)

descriptive: maintain listings and reviews

prescriptive: collect standards (e.g. naming scheme) and best practices (e.g. moving beyond BW parameters)

A few notes:

73,

- 1. Theory papers are being incorporated into the listings.
- 2. The listings are rapidly expanding.
 - \implies sometimes changes are provisional
 - \implies the naming scheme is expanding
 - \implies reviews are undergoing major revisions

Send ideas/feedback/mistakes to anyone on the list or to pdg@lbl.gov

Alberto Masoni (Cagliari) Ryan Mitchell (Indiana)

Mikhail Mikhasenko (CERN) Sergio Navas (Granada) Claudia Patrignani (Bologna) Stefan Spanier (Tennessee) Graziano Venanzoni (Pisa) Vitaly Vorobyev (Novosibirsk)

- 1. Theory papers are being incorporated into the listings.
- 2. The listings are rapidly expanding.
 - \implies sometimes changes are provisional
 - \implies the naming scheme is expanding
 - \implies reviews are undergoing major revisions

Send ideas/feedback/mistakes to anyone on the list or to pdg@lbl.gov

Send id

3.8

Graziano Venanzoni (Pisa)

Vitaly Vorobyev (Novosibirsk)

6

 \underline{v}

 $m_{J/\psi K^+}$ [GeV]

4

1001

3.8

 $m_{J/\psi K^+}$ [GeV]

4

8. Naming Scheme for Hadrons

Status of N

Revised August 2019 by V. Burkert (Jefferson Lab), S. Eidelman (Budker Inst., Novosibirsk; Novosibirsk U.), C. Hanhart (Jülich), E. Klempt (Bonn U.), R.E. Mitchell (Indiana U.), U. Thoma (Bonn U.), L. Tiator (KPH, JGU Mainz) and R.L. Workman (George Washington U.).

Table 8.1: Symbols for mesons with strangeness and heavy-flavor quantum numbers equal to zero. States that do not yet appear in the RPP are listed in parentheses.

meson names are based solely on quantum numbers (but original names are also kept)

- 1. Theory papers are being incorporated into the listings.
- 2. The listings are rapidly expanding.
 - \implies sometimes changes are provisional
 - \implies the naming scheme is expanding
 - \implies reviews are undergoing major revisions

Send ideas/feedback/mistakes to anyone on the list or to <u>pdg@lbl.gov</u>

PDG Meson Team:

Claude Amsler (Vienna) Michael Doser (CERN) Thomas Gutsche (Tübingen) Christoph Hanhart (Jülich) Juan-Jose Hernández-Rey (Valencia) Carlos Lourenço (CERN) Alberto Masoni (Cagliari) Ryan Mitchell (Indiana) Mikhail Mikhasenko (CERN) Sergio Navas (Granada) Claudia Patrignani (Bologna) Stefan Spanier (Tennessee) Graziano Venanzoni (Pisa) Vitaly Vorobyev (Novosibirsk)

Article

Observation of structure in the J/ψ -pai

LHCb collaboration¹

ne for Hadrons

S. Eidelman (Budker Inst., Novosibirsk; Novosi-.), R.E. Mitchell (Indiana U.), U. Thoma (Bonn man (George Washington U.).

th strangeness and heavy-flavor quanthat do not yet appear in the RPP are

harder extension to $T_{cc\bar{c}\bar{c}}$ (ongoing) and T_{cc}^+ (!!) [and also $X_{0/1}(2900) \rightarrow D^-K^+$ (??)]

Mikhail Mikhasenko (CERN) Sergio Navas (Granada) Claudia Patrignani (Bologna) Stefan Spanier (Tennessee) Graziano Venanzoni (Pisa) Vitaly Vorobyev (Novosibirsk) rs are being incorporated into the listings.

- are rapidly expanding.
- \implies sometimes changes are provisional
- \implies the naming scheme is expanding
- \implies reviews are undergoing major revisions

Send ideas/feedback/mistakes to anyone on the list or to pdg@lbl.gov

Status of Meson Spectroscopy in the PDG

Hadron 2021 Roundtable

Select upcoming reviews for meson spectroscopy

Spectroscopy of Light Meson Resonances C. Amsler, S. Eidelman, A. Masoni, G. Venanzoni			
Heavy Non-qqbar Mesons	(new)		

S. Eidelman, T. Gutsche, C. Hanhart, R. Mitchell (new)

Scalar Mesons below 2 GeV

C. Amsler, S. Eidelman, T. Gutsche, C. Hanhart, R. Mitchell, S. Spanier

Spectroscopy of Mesons Containing Two Heavy Quarks S. Eidelman, J. J. Hernández-Rey, C. Lourenço, R. Mitchell,

S. Navas, C. Patrignani

Quark Model C. Amsler, T. DeGrand, B. Krusche

Naming Scheme for HadronsV. Burkert, S. Eidelman, C. Hanhart, R. Mitchell, U. Thoma,L. Tiator, R. Workman

Carlos Louicilço (CLICIT)

Alberto Masoni (Cagliari) Ryan Mitchell (Indiana)

Mikhail Mikhasenko (CERN) Sergio Navas (Granada) Claudia Patrignani (Bologna) Stefan Spanier (Tennessee) Graziano Venanzoni (Pisa) Vitaly Vorobyev (Novosibirsk) July 30, 2021 ell (Indiana University)

Philosophy: descriptive vs. prescriptive (generally descriptive)

descriptive: maintain listings and reviews

prescriptive: collect standards (e.g. naming scheme) and best practices (e.g. moving beyond BW parameters)

A few notes:

- 1. Theory papers are being incorporated into the listings.
- 2. The listings are rapidly expanding.
 - \implies sometimes changes are provisional
 - \implies the naming scheme is expanding
 - \implies reviews are undergoing major revisions

Send ideas/feedback/mistakes to anyone on the list or to pdg@lbl.gov

Status of Meson Spectroscopy in the PDG Hadron 2021 Roundtable July 30, 2021 Ryan Mitchell (Indiana University)

"Unstable Mesons" are curated by the PDG Meson Team:

Simon Eidelman (Novosibirsk) Claude Amsler (Vienna) Michael Doser (CERN) Thomas Gutsche (Tübingen) Christoph Hanhart (Jülich) Juan-Jose Hernández-Rey (Valencia) Carlos Lourenço (CERN) Alberto Masoni (Cagliari) *Ryan Mitchell (Indiana)* Mikhail Mikhasenko (CERN) Sergio Navas (Granada) Claudia Patrignani (Bologna) Stefan Spanier (Tennessee) Graziano Venanzoni (Pisa) Vitaly Vorobyev (Novosibirsk) Philosophy: descriptive vs. prescriptive (generally descriptive)

descriptive: maintain listings and reviews

prescriptive: collect standards (e.g. naming scheme) and best practices (e.g. moving beyond BW parameters)

A few notes:

- 1. Theory papers are being incorporated into the listings.
- 2. The listings are rapidly expanding.
 - \implies sometimes changes are provisional
 - \implies the naming scheme is expanding
 - \implies reviews are undergoing major revisions

Send ideas/feedback/mistakes to anyone on the list or to pdg@lbl.gov

Baryons, Status and Aims Eberhard Klempt University of Bom

19th International Conference on Hadron Spectroscopy and Structure Dexico City (Mexico), July 25 to 31, 2021.

Status: Baryon@PDG

2010 edition	2012 edition	2014 edition	2016 edition	2018 edition	2020 edition
Charles Wohl	Charles Wohl	Mike Pennington	Mike Pennington	Eberhard Klempt	Eberhard Klempt
Ron Workman	Eberhard Klempt	Volker Burkert	Volker Volker Burkert Burkert		Volker Burkert
	Ron Workman	Eberhard Klempt	Eberhard Klempt	Lothar Tiator	Lothar Tiator
		Lothar Tiator	Lothar Tiator	Ron Workman	Ulrike Thoma
2021: E. Kler	npt \longrightarrow	Volker (Crede		Ron Workman
Tables: $N(1440)P_{11} \rightarrow N(1440)1/2^+$		Why Λ _c (2880) not Λ _c (2880)5	j/2 ⁺ ?	Pole position first	
Reviews:	Minireview on <i>N</i> and ∆ revised	Note on electro- production	Two-pole structure of Λ(1405)	Resonances E.K. + D.Asner C. Hanhart	Minireview on Λ and Σ revised

The impact of on baryo	photo photo	produ ances	iction	bla ree bla	ack: 1: ue:	Decay modes of nucleon resonances PDG 2004 PDG 2018 BESIII resonances			**** *** *	Exist Existe Evidence Evidence	ence is certain. nce is very likely. of existence is fair of existence is poo	r.			
	overall	$N\gamma$	$N\pi$	$\Delta \pi$	$N\sigma$	$N\eta$	ΛK	ΣK	$N\rho$	$N\omega$	$N\eta\prime$	$N_{1440}\pi$	$N_{1520}\pi$	$N_{1535}\pi$	N_{1680}
$N = 1/2^+$	****														
$N(1440) \ 1/2^+$	****	***	****	***	***										
$N(1520) 3/2^{-}$	****	****	****	****	**	****									
$N(1535) \ 1/2^{-}$	****	****	****	***	*	****									
$N(1650) 1/2^{-}$	****	***	****	***	*	****	*					*			
$N(1675) 5/2^{-1}$	****	***	****	***	***	*	*	*					*		
$N(1680) 5/2^+$	****	****	****	****	***	*									
$N(1700) 3/2^{-}$	***	**	***	***	*	*			*						
$N(1710) 1/2^+$	***	****	****	*		***	**	*	*	*				*	
$N(1720) \ 3/2^+$	****	****	****	***	*	*	****	*	*	*					
$N(1860) 5/2^{+}$	**	*	**		*	*									
$N(1875) 3/2^{-}$	***	**	**	*	**	*	*	*	*	*	*	*			
$N(1880) \ 1/2^{+}$	***	**	*	**	*	*	**	**		**				*	
$N(1895) 1/2^{-}$	****	****	*	*	*	****	**	**	*	*	****	*			
N(1900) 3/2 ⁺	****	****	**	**	*	*	**	**		*	**				
N(1990) 7/2+	**	**	**	*	*	*	**	**							
N(2000) 5/2 ⁺	**	**	*	**	*	*				*					
N(2040) 3/2	*		*												
N(2060) = 5/2 $N(0100) = 1/0^{+}$	***	***	**	*	*	*	*	*	*	*		*	*		*
N(2100) 1/2	***	**	***	**	**	*	*		*	*	**			***	
N(2120) - 3/2 N(2100) - 7/2 = -	***	***	***	**	**		**	*		*	*	*	*	*	
N(2190) 7/2	****	****	****	****	**	*	**	*	*	*					
N(2220) 9/2 ·	****	**	****			*	*	*							
N(2250) 9/2 $N(2200) 1/2^{\pm}$	****	**	****			*	*	*							
$N(2500) = 1/2^{+}$ $N(2570) = /2^{-}$	*		*												
N(2070) = 0/2 $N(2600) = 11/2^{-1}$	*		*												
N(2000) 11/2 $N(2700) 13/2^+$	***		***											E Klempt 2019	
11(2100) 13/2	**		**											Б. Кіешрі, 2019	

				1		D		1 6 4			T2 1 4	
The improved	-6-1-4-			L 1.		Deca	y moo	tes of Δ re	esonances	****	Existenc	e is certain.
The impact	or photo	produ	iction	DIa	ICK:	PDG	2004			***	Existence	is very likely.
on Δ resona	inces			rec	1:	FDG	2018			**	Evidence of e	existence is fair.
										*	Evidence of e	xistence is poor.
	overall	$N\gamma$	$N\pi$	$\Delta \pi$	ΣK	$N \rho$	$\Delta \eta$	$N_{1440}\pi$	$N_{1520}\pi$	$N_{1535}\pi$	$N_{1680}\pi$	
$\Delta(1232) 3/2$	****	****	****									
$\Delta(1600) 3/2$	****	****	***	***								
$\Delta(1620)$ 1/2	****	****	****	****								
$\Delta(1700) 3/2$	****	****	****	****	*	*		*				
$\Delta(1750) 1/2$	2+ *	*	*		*							
$\Delta(1900)$ 1/2	***	***	***	*	**	*		*	*			
$\Delta(1905) 5/2$	****	***	****	**	*	*	**				*	
$\Delta(1910) 1/2$	****	***	****	**	**		*	*		*		
$\Delta(1920) 3/2$	* ***	***	***	***	**		**					
$\Delta(1930) 5/2$	- ***	*	***	*	*							
$\Delta(1940) 3/2$	**	*	**	*			*	*	*	*		
$\Delta(1950) 7/2$	****	****	****	**	***						*	
$\Delta(2000) 5/2$	* **	*	**	*		*						
$\Delta(2150) 1/2$	*		*									
$\Delta(2200) 7/2$	***	***	**	***	**							
$\Delta(2300) 9/2$	* **		**									
$\Delta(2350) 5/2$	*		*									
$\Delta(2390) 7/2$	2+ *		*									
$\Delta(2400) 9/2$	- **	**	**									
$\Delta(2420)$ 11/	2+ ****	*	****									
$\Delta(2750)$ 13/	2 **		**									
$\Delta(2950)$ 15/	2+ **		**								E	. Klempt, 2019

- Test of quark models
 - Number of baryon states (frozen diquarks?) Number of states rules out frozen diquarks, Cascade decays evidence 3-quark dynamics
 - $M^2 \propto L + 2N$ (harmonic oscillator) or $M^2 \propto L + N$ (string models)

Parity doublets

•
$$M(J^+) = M(J^-)$$
?

unlikely!

< ≣⇒

æ

More baryons:

Hyperons, cascades, charmed baryons, beautiful baryons

$(D, L_N^P) S J^P$	Singlet		Octet		Dec	uplet
$(56,0_0^+) \frac{1}{2} \frac{1}{2}^+$		N(939)	Λ(1116)	Σ(1193)		
$\frac{3}{2}$ $\frac{3}{2}$ +					Δ(1232)	Σ(1385)
$(70, 1_1^-) \frac{1}{2} \frac{1}{2}^-$	Λ(1405)	N(1535)	Λ(1670)	Σ(1620)	Δ(1620)	Σ(1900)†
<u>3</u> —	Λ(1520)	N(1520)	Λ(1690)	Σ(1670)	Δ(1700)	Σ(1910)†
$\frac{3}{2} \frac{1}{2}^{-}$		N(1650)	Λ(1800)	Σ(1750)		
<u>3</u> -		N(1700)	θ	θ		
<u>5</u> —		N(1675)	Λ(1830)	Σ(1775)		
$(56, 0^+_2) \frac{1}{2} \frac{1}{2}^+$		N(1440)	Λ(1600)	Σ(1660)		
$\frac{3}{2}\frac{3}{2}^+$					Δ(1600)	Σ(1780)
$(70, 0^+_2) \frac{1}{2} \frac{1}{2}^+$	Λ(1710)	N(1710)	Λ(1810)	Σ(1880)	Δ(1750)	θ
$\frac{3}{2} \frac{3}{2}^+$		θ	θ	θ		
$(56, 2^+_2) \frac{1}{2} \frac{3}{2}^+$		N(1720)	Λ(1890)	Σ(1940)		
$\frac{1}{2} \frac{5}{2}^+$		N(1680)	Λ(1820)	Σ(1915)		
$\frac{3}{2} \frac{1}{2}^+$					Δ(1910)	
$\frac{3}{2}\frac{3}{2}^+$					Δ(1920)	Σ(2080)
$\frac{3}{2}\frac{5}{2}^+$					Δ(1905)	Σ(2070)
$\frac{3}{2} \frac{7}{2}^+$					∆(1950)	Σ(2030)

$(70, 2^+_2) \frac{1}{2} \frac{3}{2}^+$	Λ(2070)	θ	θ	θ	θ	θ
$\frac{5}{2}^{+}$	Λ(2110)	N(1860)	θ	θ	∆(2000)	θ
$\frac{3}{2}\frac{1}{2}^+$		N(1880)	θ	θ		
$\frac{3}{2}$		N(1900)	θ	\ominus		
<u>5</u> + 2		N(2000)	θ	θ		
$\frac{7}{2}^{+}$		N(1990)	Λ(2085)	θ		
$(20, 1_2^+) \frac{1}{2} \frac{1}{2}^+$	θ	θ	θ	θ		
$\frac{3}{2}^{+}$	θ	θ	θ	\ominus		
<u>5</u> + 2	θ					
$(56, 1_3^-) \frac{1}{2} \frac{1}{2}^-$		N(1895)	Λ(2000)	Σ(1900)†		
$\frac{3}{2}$		N(1875)	Λ(2050)	Σ(1910)†		
$\frac{3}{2}\frac{1}{2}^{-}$					∆(1900)	Σ(2110)†
3-					∆(1940)	Σ(2010)†
5					∆(1930)	θ
$(70, 3_3^-) \frac{1}{2} \frac{5}{2}^-$	Λ(2080)	N(2060)	θ	θ	θ	θ
$\frac{7}{2}$	Λ(2100)	N(2190)	θ	Σ(2100)	Δ(2200)	θ

Caution:

Are there "bumps" beyond the quark model?

 $P_c' s
ightarrow J/\psi N, N(1685
ightarrow N\eta \Lambda(1380)1/2^- + \Lambda(1405)1/2^-$

Nature of "bumps":

True resonance or rescattering? Factorization of prod. and decay

Quark-model state or dynamically generated resonances? Weinberg criterium

(Baryon plus meson) and (qqq) can be different sets of wave functions. The true wave function is a superposition! There is no extra state, e.g. there is only one $N(1535)1/2^{-1}$.

Round table: Present and future of hadron spectroscopy

Feng-Kun Guo Institute of Theoretical Physics, CAS

Hidden-charm

- Many charmonium-like structures, some are close to thresholds, and the others do not. Any pattern?
- In most cases, resonance parameters extracted using Breit-Wigner

Coupled channels and thresholds not considered

Molecular spectrum predicted in X.-K. Dong, FKG, B.-S. Zou, Progr.Phys. 41 (2021) 65 [arXiv:2101.01021]

- Many charmonium-like structures, some are close to thresholds, and the others do not. Any pattern?
- In most cases, resonance parameters extracted using Breit-Wigner
 Unitarity: the same resonance may behave completely different in different processes

4

Z_{cs}(4000, 4220) @LHCb E.g., $Z_{cs}(3985)$ @BESIII; LHCb, arXiv: 2103.01803 BESIII, PRL 126, 102001 (2021); talk by P.-G. Ping, Session-Exotics, 29.07 Data √s = 4.681 GeV otal fit 30 Z_~(3985)⁻ **D*** (2600)⁰D*⁰ 20 non-Res. Events /(5.0 MeV/c^2) $\mathbf{D}_{\mathbf{s}}^{\dagger} \mathbf{D}_{\mathbf{s}}^{(\dagger)}$ comb. BKG 4.05 4.1 4.15 *s* = 4.628 GeV √*s* = 4.641 GeV 3.6 *s* = 4.661 GeV √*s* = 4.698 GeV 15 10 4.05 4.1 4.15 $RM(K^+)$ (GeV/c²) $M_{Z_{cs}(3985)} = (3982.5^{+1.8}_{-2.6} \pm 2.1) \mathrm{MeV}/c^2,$

 $\Gamma_{z_{cs}(3985)} = (12.8^{+5.3}_{-4.4} \pm 3.0) \text{MeV},$

 $M_{Z_{cs}(4000)} = (4003 \pm 6^{+4}_{-14}) \mathrm{MeV}/c^2,$ $\Gamma_{z_{cs}(4000)} = (131 \pm 15 \pm 26) \text{MeV},$ $M_{Z_{cs}(4220)} = (4216 \pm 24^{+43}_{-30}) \mathrm{MeV}/c^2,$ $\Gamma_{z_{cs}(4220)} = (233 \pm 52^{+97}_{-73}) \text{MeV},$

Ortega, Entem, Fernandez, 2103.07781; talk by Ortega, Session-Exotics, 28.07

- Many charmonium-like structures, some are close to thresholds, and the others do not. Any pattern?
- In most cases, resonance parameters extracted using Breit-Wigner

Triangle singularities not considered

□ Triangle singularities are sensitive to kinematic variables ⇒ energy dependence, more processes
 □ Narrow peaks for S-wave coupling

Review: FKG, X.-H. Liu, S. Sakai, PPNP112, 103757 (2020)

Talks:

- *P_c* states:
- E. Swanson, Session-Exotics, 28.07; S. Nakamura, Session-Exotics, 28.07;
- In production of X(3872):
 L. He, Session-Exotics, 28.07;
- *d**(2380): R. Molina, Session-baryon, 27.07;
- *a*₁(1420):
 M. Wagner, Session-Exotics, 31.07;
- Structure at $M_{p\eta} \approx 1710$ MeV: M. Nanova, Session-Baryon, 28.07;
- In $p\Sigma^- \rightarrow K^-d$: A. Feijoo Aliau, Session-Baryon, 31.07;

Round table on "present and future of hadron spectroscopy" – lattice QCD

Christopher Thomas, University of Cambridge

c.e.thomas@damtp.cam.ac.uk

19th International Conference on Hadron Spectroscopy and Structure (Hadron 2021), 26 July – 1 August 2021

Present and future – lattice QCD – 1

- Precise results for low-lying (stable) hadrons in each flavour sector, physical quark masses, $a \rightarrow 0$, isospin breaking ($m_u \neq m_d$ and QED).
- Huge progress in using lattice QCD to study resonances etc in hadron-hadron scattering in the last decade.
- ρ resonance in (approximately) elastic $\pi\pi$ many calculations by different groups, physical quark masses, $a \rightarrow 0$.
- Other elastic scattering channels, e.g. *K*π, *D*π, *DK*
- Coupled-channel scattering, e.g. light scalars, b_1 , π_1

[Plenary by Dave Wilson on Thursday and parallel talks]

Present and future – lattice QCD – 2

- Charmonium and bottomonium sector, "XYZ"s very limited calculations so far.
- Exotic flavour: $J^{P}=1^{+}\overline{b}\overline{b}ud$ (I=0), $\overline{b}\overline{b}us$ bound states charm analogues, resonances?

[Many parallel talks at Lattice 2021, e.g. Brian Colquhoun, Nilmani Mathur, Martin Pflaumer]

• Baryon-meson and baryon-baryon systems, e.g. Roper, Δ , deuteron, H dibaryon, P_c – so far conclusions less clear.

[Plenary by Ben Hörz at Lattice 2021]

• Glueballs?

Present and future – lattice QCD – 3

Formulation exists for 3-hadron scattering (for now some restrictions); so far only a few applications (e.g. I=3 πππ and I=3/2 KKK). Connection with experimental analyses.

[Plenary by Fernando Romero-Lopez on Thursday and parallel talks]

- Additional probes/tests from form factors and transitions. Formulation exists for resonances, very few applications.
- Lattice QCD can provide other interesting ways to probe the physics, e.g. by varying light-quark mass (m_{π}) , SU(3)_F symmetry.

Questions

A CONTRACT OF THE PARTY OF THE

 \square What is the dominant mechanism for J/ψ near-threshold production?

- 1) Production mechanism in most literature assumed to be VMD
- 2) The current reconciling the GlueX and LHCb results on P_c relies on VMD, leading to an upper limit of the $P_c \rightarrow J/\psi p$ branching fraction. If the mechanism is different, the Br limits would be different.

M.-L. Du, V. Baru, FKG, C. Hanhart, U.-G. Meißner, A. Nefediev, I. Strakovsky, EPJC80(2020)1053

■ As for the exotic π_1 on lattice, a $\bar{q}Gq$ operator is needed to get the correct mass, and it couples strongly to $b_1\pi$ [talk by D. Wilson, 29.07]; as for X(3872), both $\bar{c}c$ and $D\bar{D}^*$ operators are needed [Prelovsek, Leskovec, PRL111, 192001, 2013]. On the other hand, the coupling contains structure information. How can we learn about internal structure of the hadron states from such lattice information?