Status of Meson Spectroscopy in the PDG

Hadron 2021 Roundtable July 30, 2021
Ryan Mitchell (Indiana University)
"Unstable Mesons" are curated by the PDG Meson Team:

Simon Eidelman (Novosibirsk)
Claude Amsler (Vienna)
Michael Doser (CERN)
Thomas Gutsche (Tübingen)
Christoph Hanhart (Jülich)
Juan-Jose Hernández-Rey (Valencia)
Carlos Lourenço (CERN)
Alberto Masoni (Cagliari)
Ryan Mitchell (Indiana)
Mikhail Mikhasenko (CERN)
Sergio Navas (Granada)
Claudia Patrignani (Bologna)
Stefan Spanier (Tennessee)
Graziano Venanzoni (Pisa)
Vitaly Vorobyev (Novosibirsk)

Philosophy: descriptive vs. prescriptive (generally descriptive)

```
descriptive: maintain listings and reviews
prescriptive: collect standards (e.g. naming scheme) and best practices (e.g. moving beyond BW parameters)
```

A few notes:

1. Theory papers are being incorporated into the listings.
2. The listings are rapidly expanding.
\Longrightarrow sometimes changes are provisional
\Longrightarrow the naming scheme is expanding
\Longrightarrow reviews are undergoing major revisions
Send ideas/feedback/mistakes to anyone on the list or to pdg@lbl.gov

Status of Meson Spectroscopy in the PDG

Hadron 2021 Roundtable July 30, 2021
Ryan Mitchell (Indiana University)

Claudia Patrignani (Bologna)
Stefan Spanier (Tennessee)
Graziano Venanzoni (Pisa)
Vitaly Vorobyev (Novosibirsk)

Philosophy: descriptive vs. prescriptive (generally descriptive)
descriptive: maintain listings and reviews
prescriptive: collect standards (e.g. naming scheme) and best practices (e.g. moving beyond BW parameters)

A few notes:

1. Theory papers are being incorporated into the listings.
2. The listings are rapidly expanding.
\Longrightarrow sometimes changes are provisional
\Longrightarrow the naming scheme is expanding
\Longrightarrow reviews are undergoing major revisions
Send ideas/feedback/mistakes to anyone on the list or to pdg@lbl.gov

Status of Meson Spectroscopy in the PDG

Hadron 2021 Roundtable

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083 C01 (2020) and 2021 update

$$
\iota^{G}\left(J^{P C}\right)=0^{+}\left(0^{++}\right)
$$

See the review on "Scalar Mesons below 2 GeV ."

$f_{0}(980)$ T-MATRIX POLE \sqrt{s}

VALUE (MeV)

\qquad TECN COMMENT

- - We do not use the following data for averages, fits, limits, etc. - -

$\left(1003{ }_{-27}^{+}{ }^{5}\right)-i\left(21_{-}^{+10}\right)$	1 GARCIA-MAR.. 11	RVUE	Compila
$\left.(996 \pm 7)-i\left(25_{-}^{+10}\right)^{\circ}\right)$	2 GARCIA-MAR. 11	RVUE	Compila
$\left(973{ }_{-127}^{+39}\right)-i\left(11_{-}^{+189}\right)$	3 PELAEZ 04A	RV	$\pi \rightarrow \pi$

uly 30, 2021
ell (Indiana University)
$(996 \pm 7)-i\left(25_{-}^{+10}\right) \quad 2$ GARCIA-MAR.. 11 RVUE Compilation
OPELAEZ 04A RVUE $\pi \pi \rightarrow \pi \pi$
${ }^{1}$ Reanalysis of the $K_{e 4}$ data of BATLEY 10 C and the $\pi N \rightarrow \pi \pi N$ data of HYAMS 73, GRAYER 74, and PROTOPOPESCU 73 using Roy equations.
${ }^{2}$ Reanalysis of the $K_{e 4}$ data of BATLEY 10C and the $\pi N \rightarrow \pi \pi N$ data of HYAMS 73, GRAYER 74, and PROTOPOPESCU 73 using GKPY equations.
${ }^{3}$ Reanalysis of data from PROTOPOPESCU 73, ESTABROOKS 74, GRAYER 74, and COHEN 80 in the unitarized ChPT model.

$f_{0}(980)$ MASS

OUR ESTIMAT

990 ± 20 OUR ESTIMATE

- - We do not use the following data for averages, fits, limits, etc. - -

$992.8 \pm 0.8 \pm 1.0$	1 ALBRECHT	20	RVUE	$\begin{aligned} & 0.9 \bar{p} p \\ & \pi^{0} \eta \eta \end{aligned}$
$992.0 \pm{ }_{-7.5}{ }^{\text {a }}$ 土 8.6	2 AAIJ		LHCB	$p \mathrm{p} \rightarrow$

AAIJ 19H LHCB $p p \rightarrow D^{ \pm} X$
${ }^{1}$ T-matrix pole, 5 poles, 5 channels, including scattering data from HYAMS $75(\pi \pi)$, LONGACRE $86(K \bar{K})$, BINON $83(\eta \eta)$, and BINON $84 C\left(\eta \eta^{\prime}\right)$. Second solution $977.8 \pm$ $0.6 \pm 1.6 \mathrm{MeV}$
${ }^{2}$ From the $D^{ \pm} \rightarrow K^{ \pm} K^{+} K^{-}$Dalitz plot fit with the Triple-M amplitude in the multimeson model of AOUDE 18.

steran spaniel (rennessee)

Graziano Venanzoni (Pisa)
Vitaly Vorobyev (Novosibirsk)

Philosophy: descriptive vs. prescriptive (generally descriptive)

descriptive: maintain listings and reviews
prescriptive: collect standards (e.g. naming scheme) and best practices (e.g. moving beyond BW parameters)

A few notes:

1. Theory papers are being incorporated into the listings.

2 . The listings are rapidly expanding.
\Longrightarrow sometimes changes are provisional
\Longrightarrow the naming scheme is expanding
\Longrightarrow reviews are undergoing major revisions
Send ideas/feedback/mistakes to anyone on the list or to pdg@lbl.gov

Updated August 2019.

Mass (MeV)

he PDG

Ryan Mitchell (Indiana)

Mikhail Mikhasenko (CERN)
Sergio Navas (Granada)
Claudia Patrignani (Bologna)
Stefan Spanier (Tennessee)
Graziano Venanzoni (Pisa)
Vitaly Vorobyev (Novosibirsk)
2. The listings are rapidly expanding.
\Longrightarrow sometimes changes are provisional
\Longrightarrow the naming scheme is expanding
\Longrightarrow reviews are undergoing major revisions
Send ideas/feedback/mistakes to anyone on the list or to pdg@lbl.gov

Charmonium System
Updated August 2019.

Ryan Mitchell (Indiana)
Mikhail Mikhasenko (CERN)
Sergio Navas (Granada)
Claudia Patrignani (Bologna)
Stefan Spanier (Tennessee)
Graziano Venanzoni (Pisa)
Vitaly Vorobyev (Novosibirsk)

Observation of new resonances decaying to $J / \psi K^{+}$and $J / \psi \phi$
arXiv:2103.01803v1 [hep-ex] 2 Mar 2021
LHCb collaboration ${ }^{\dagger}$

Figure 3: Distributions of ϕK^{+}(left), $J / \psi \phi$ (middle) and $J / \psi K^{+}$(right) invariant masses for the $B^{+} \rightarrow J / \psi \phi K^{+}$candidates (black data points) compared with the fit results (red solid lines) of the default model (top row) and the Run 1 model (bottom row).
2. The listings are rapidly expanding.
\Longrightarrow sometimes changes are provisional
\Longrightarrow the naming scheme is expanding
\Longrightarrow reviews are undergoing major revisions
Send ideas/feedback/mistakes to anyone on the list or to pdg@lbl.gov

Status of I

8. Naming Scheme for Hadrons

Revised August 2019 by V. Burkert (Jefferson Lab), S. Eidelman (Budker Inst., Novosibirsk; Novosibirsk U.), C. Hanhart (Jülich), E. Klempt (Bonn U.), R.E. Mitchell (Indiana U.), U. Thoma (Bonn U.), L. Tiator (KPH, JGU Mainz) and R.L. Workman (George Washington U.).

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083 C01 (2020) and 2021 update
$\chi_{c 1}(3872)$

$$
I^{G}\left(J^{P C}\right)=0^{+}\left(1^{++}\right)
$$

also known as $X(3872)$
This state shows properties different from a conventional $q \bar{q}$ state.
A candidate for an exotic structure. See the review on non $-q \bar{q}$ states.
"Unstable Mesons" are curated by the PDG Meson Team:

Simon Eidelman (Novosibirsk)
Claude Amsler (Vienna)
Michael Doser (CERN)
Thomas Gutsche (Tübingen)
Christoph Hanhart (Jülich)
Juan-Jose Hernández-Rey (Valencia)
Carlos Lourenço (CERN)
Alberto Masoni (Cagliari)
Ryan Mitchell (Indiana)
Mikhail Mikhasenko (CERN)
Sergio Navas (Granada)
Claudia Patrignani (Bologna)
Stefan Spanier (Tennessee)
Graziano Venanzoni (Pisa)
Vitaly Vorobyev (Novosibirsk)

Table 8.1: Symbols for mesons with strangeness and heavy-flavor quantum numbers equal to zero. States that do not yet appear in the RPP are listed in parentheses.

$$
\begin{aligned}
& \hline \hline J^{P C}=\left\{\begin{array}{ccccc}
0^{-+} & 1^{+-} & 1^{--} & 0^{++} \\
2^{-+} & 3^{+-} & 2^{--} & 1^{++} \\
& \vdots & \vdots & \vdots & \vdots \\
\text { Minimal quark content } & & & & \\
\hline u \bar{d}, u \bar{u}-d \bar{d}, d \bar{u}(I=1) & \pi & b & \rho & a \\
d \bar{d}+u \bar{u} \text { and } / \text { or } s \bar{s}(I=0) & \eta, \eta^{\prime} & h, h^{\prime} & \omega, \phi & f, f^{\prime} \\
c \bar{c} & \eta_{c} & h_{c} & \psi & \chi_{c} \\
b \bar{b} & \eta_{b} & h_{b} & \Upsilon & \chi_{b} \\
I=1 \text { with } c \bar{c} & \left(\Pi_{c}\right) & Z_{c} & R_{c} & \left(W_{c}\right) \\
I=1 \text { with } b \bar{b} & \left(\Pi_{b}\right) & Z_{b} & \left(R_{b}\right) & \left(W_{b}\right) \\
\hline
\end{array}\right.
\end{aligned}
$$

meson names are based solely on quantum numbers
(but original names are also kept)

1. Theory papers are being incorporated into the listings.
2. The listings are rapidly expanding.
\Longrightarrow sometimes changes are provisional
\Longrightarrow the naming scheme is expanding
\Longrightarrow reviews are undergoing major revisions

Send ideas/feedback/mistakes to anyone on the list or to pdg@lbl.gov

Observation of a Near-Threshold Structure in the K^{+}Recoil-Mass Spectra in $e^{+} e^{-} \rightarrow K^{+}\left(D_{s}^{-} D^{* 0}+D_{s}^{*-} D^{\mathbf{0}}\right)$
(BESIII Collaboration)

easy extension from Z_{c}, Z_{b}, etc. to $Z_{c s}, Z_{b s}$, etc.

8. Naming Scheme for Hadrons

by V. Burkert (Jefferson Lab), S. Eidelman (Budker Inst., Novosibirsk; Novosi(Jülich), E. Klempt (Bonn U.), R.E. Mitchell (Indiana U.), U. Thoma (Bonn JGU Mainz) and R.L. Workman (George Washington U.).
.1: Symbols for mesons with strangeness and heavy-flavor quannbers equal to zero. States that do not yet appear in the RPP are parentheses.

$J^{P C}=\left\{\begin{array}{ccccc} & 0^{-+} & 1^{+-} & 1^{--} & 0^{++} \\ & 2^{-+} & 3^{+-} & 2^{--} & 1^{++} \\ & \vdots & \vdots & \vdots & \vdots \\ \text { Minimal quark content } & & & & \\ \hline u \bar{d}, u \bar{u}-d \bar{d}, d \bar{u}(I=1) & \pi & b & \rho & a \\ d \bar{d}+u \bar{u} \text { and } / \text { or } s \bar{s}(I=0) & \eta, \eta^{\prime} & h, h^{\prime} & \omega, \phi & f, f^{\prime} \\ c \bar{c} & \eta_{c} & h_{c} & \psi & \chi_{c} \\ b \bar{b} & \eta_{b} & h_{b} & \Upsilon & \chi_{b} \\ I=1 \text { with } c \bar{c} & \left(\Pi_{c}\right) & Z_{c} & R_{c} & \left(W_{c}\right) \\ I=1 \text { with } b \bar{b} & \left(\Pi_{b}\right) & Z_{b} & \left(R_{b}\right) & \left(W_{b}\right) \\ \hline\end{array}\right.$

Michael Doser (CERN)

Thomas Gutsche (Tübingen)
Christoph Hanhart (Jülich)
Juan-Jose Hernández-Rey (Valencia)
Carlos Lourenço (CERN)
Alberto Masoni (Cagliari)
Ryan Mitchell (Indiana)
Mikhail Mikhasenko (CERN)
Sergio Navas (Granada)
Claudia Patrignani (Bologna)
Stefan Spanier (Tennessee)
Graziano Venanzoni (Pisa)
Vitaly Vorobyev (Novosibirsk)
meson names are based solely on quantum numbers
(but original names are also kept)

1. Theory papers are being incorporated into the listings.
2. The listings are rapidly expanding.
\Longrightarrow sometimes changes are provisional
\Longrightarrow the naming scheme is expanding
\Longrightarrow reviews are undergoing major revisions
Send ideas/feedback/mistakes to anyone on the list or to pdg@lbl.gov

Jaming Scheme for Hadrons

rert (Jefferson Lab), S. Eidelman (Budker Inst., Novosibirsk; Novosi. Klempt (Bonn U.), R.E. Mitchell (Indiana U.), U. Thoma (Bonn z) and R.L. Workman (George Washington U.).
ols for mesons with strangeness and heavy-flavor quan-
Article
Observation of structure in the J / ψ-pair mass spectrum
LHCb collaboration ${ }^{1}$

harder extension to $T_{c c \bar{c} \bar{c}}$ (ongoing) and $T_{c c}^{+}$(!!)
[and also $X_{0 / 1}(2900) \rightarrow D^{-} K^{+}(?)$)]

$$
1 \text { to zero. States that do not yet appear in the RPP are }
$$

$J^{P C}=\left\{\begin{array}{ccccc} & 0^{-+} & 1^{+-} & 1^{--} & 0^{++} \\ & 2^{-+} & 3^{+-} & 2^{--} & 1^{++} \\ & \vdots & \vdots & \vdots & \vdots \\ \text { quark content } & & & & \\ \hline d \bar{d}, d \bar{u}(I=1) & \pi & b & \rho & a \\ \text { and/or } s \bar{s}(I=0) & \eta, \eta^{\prime} & h, h^{\prime} & \omega, \phi & f, f^{\prime} \\ & \eta_{c} & h_{c} & \psi & \chi_{c} \\ & \eta_{b} & h_{b} & \Upsilon & \chi_{b} \\ \text { th } c \bar{c} & \left(\Pi_{c}\right) & Z_{c} & R_{c} & \left(W_{c}\right) \\ \text { th } b \bar{b} & \left(\Pi_{b}\right) & Z_{b} & \left(R_{b}\right) & \left(W_{b}\right) \\ \hline \hline\end{array}\right.$

s are based solely on quantum numbers t original names are also kept)
s are being incorporated into the listings.

are rapidly expanding.

Mikhail Mikhasenko (CERN)
Sergio Navas (Granada)
Claudia Patrignani (Bologna)
Stefan Spanier (Tennessee)
Graziano Venanzoni (Pisa)
Vitaly Vorobyev (Novosibirsk)
\Longrightarrow sometimes changes are provisional
\Longrightarrow the naming scheme is expanding
\Longrightarrow reviews are undergoing major revisions
Send ideas/feedback/mistakes to anyone on the list or to pdg@lbl.gov

Status of Meson Spectroscopy in the PDG

Hadron 2021 Roundtable

Select upcoming reviews for meson spectroscopy
Spectroscopy of Light Meson Resonances
C. Amsler, S. Eidelman, A. Masoni, G. Venanzoni (new)

Heavy Non-qqbar Mesons
S. Eidelman, T. Gutsche, C. Hanhart, R. Mitchell (new)

Scalar Mesons below 2 GeV
C. Amsler, S. Eidelman, T. Gutsche, C. Hanhart, R. Mitchell, S. Spanier

Spectroscopy of Mesons Containing Two Heavy Quarks
S. Eidelman, J. J. Hernández-Rey, C. Lourenço, R. Mitchell, S. Navas, C. Patrignani

Quark Model
C. Amsler, T. DeGrand, B. Krusche

Naming Scheme for Hadrons
V. Burkert, S. Eidelman, C. Hanhart, R. Mitchell, U. Thoma, L. Tiator, R. Workman
uly 30, 2021
ell (Indiana University)

Philosophy: descriptive vs. prescriptive (generally descriptive)
descriptive: maintain listings and reviews
prescriptive: collect standards (e.g. naming scheme) and best practices (e.g. moving beyond BW parameters)

A few notes:

1. Theory papers are being incorporated into the listings.
2. The listings are rapidly expanding.
\Longrightarrow sometimes changes are provisional
\Longrightarrow the naming scheme is expanding
\Longrightarrow reviews are undergoing major revisions
Send ideas/feedback/mistakes to anyone on the list or to pdg@lbl.gov

Status of Meson Spectroscopy in the PDG

Hadron 2021 Roundtable July 30, 2021
Ryan Mitchell (Indiana University)
"Unstable Mesons" are curated by the PDG Meson Team:

Simon Eidelman (Novosibirsk)
Claude Amsler (Vienna)
Michael Doser (CERN)
Thomas Gutsche (Tübingen)
Christoph Hanhart (Jülich)
Juan-Jose Hernández-Rey (Valencia)
Carlos Lourenço (CERN)
Alberto Masoni (Cagliari)
Ryan Mitchell (Indiana)
Mikhail Mikhasenko (CERN)
Sergio Navas (Granada)
Claudia Patrignani (Bologna)
Stefan Spanier (Tennessee)
Graziano Venanzoni (Pisa)
Vitaly Vorobyev (Novosibirsk)

Philosophy: descriptive vs. prescriptive (generally descriptive)

```
descriptive: maintain listings and reviews
prescriptive: collect standards (e.g. naming scheme) and best practices (e.g. moving beyond BW parameters)
```

A few notes:

1. Theory papers are being incorporated into the listings.
2. The listings are rapidly expanding.
\Longrightarrow sometimes changes are provisional
\Longrightarrow the naming scheme is expanding
\Longrightarrow reviews are undergoing major revisions
Send ideas/feedback/mistakes to anyone on the list or to pdg@lbl.gov

Status: Baryon@PDG

2010 edition	2012 edition	2014 edition	2016 edition	2018 edition	2020 edition
Charles Wohl	Charles Wohl	Mike Pennington	Mike Pennington	Eberhard Klempt	Eberhard Klempt
Ron Workman	Eberhard Klempt Ron Workman	Volker Burkert	Volker Burkert	Volker Burkert	Volker Burkert
		Eberhard Klempt	Eberhard Klempt	Lothar Tiator	Lothar Tiator
		Lothar Tiator	Lothar Tiator	Ron Workman	Ulrike Thoma
					Ron
2021: E. Klemp	pt \longrightarrow	Volker Crede			Workman
Tables:	$\begin{gathered} N(1440) P_{11} \\ \vec{\rightarrow} \\ N(1440) 1 / 2^{+} \end{gathered}$	Why $\Lambda_{c}(2880)$ not $\Lambda_{c}(2880) 5 / 2^{+}$?		Pole position first	
Reviews:	Minireview on N and Δ revised	Note on electroproduction	Two-pole structure of $\Lambda(1405)$	Resonances E.K. + D.Asner C. Hanhart	Minireview on $\boldsymbol{\Lambda}$ and Σ revised

The impact of photoproduction on baryon resonances					black: red: blue:		Decay modes of nucleon resonances PDG 2004 PDG 2018 BESIII resonances						$\begin{gathered} \hline * * * * \\ * * * \\ * * \\ * \end{gathered}$	Existence is certain. Existence is very likely. Evidence of existence is fair. Evidence of existence is poor.		
		overall	$N \gamma$	$N \pi$	$\Delta \pi$	$N \sigma$	$N \eta$	ΛK	ΣK	$N \rho$	$N \omega$	$N \eta^{\prime}$	$N_{1440} \pi$	$N_{1520} \pi$	$N_{1535} \pi$	N_{1680}
N	$1 / 2^{+}$	****														
$N(1440)$	$1 / 2^{+}$	****	****	****	****	***										
$N(1520)$	$3 / 2^{-}$	****	****	****	****	**	****									
$N(1535)$	$1 / 2^{-}$	****	****	****	***	*	****									
$N(1650)$	$1 / 2^{-}$	****	****	****	***	*	****	*					*			
$N(1675)$	$5 / 2^{-}$	****	****	****	***	***	*	*	*					*		
$N(1680)$	$5 / 2^{+}$	****	****	****	****	***	*									
$N(1700)$	$3 / 2^{-}$	***	**	***	***	*	*			*						
$N(1710)$	$1 / 2^{+}$	****	****	****	*		***	**	*	*	*				*	
$N(1720)$	$3 / 2^{+}$	****	****	****	***	*	*	****	*	*	*					
$N(1860)$	$5 / 2^{+}$	**	*	**		*	*									
$N(1875)$	$3 / 2^{-}$	***	**	**	*	**	*	*	*	*	*	*	*			
$N(1880)$	$1 / 2^{+}$	***	**	*	**	*	*	**	**		**				*	
$N(1895)$	$1 / 2^{-}$	****	****	*	*	*	****	**	**	*	*	****	*			
$N(1900)$	$3 / 2^{+}$	****	****	**	**	*	*	**	**		*	**				
$N(1990)$	$7 / 2^{+}$	**	**	**	*	*	*	**	**							
$N(2000)$	$5 / 2^{+}$	**	**	*	**	*	*				*					
$N(2040)$	$3 / 2^{+}$	*		*												
$N(2060)$	$5 / 2^{-}$	***	***	**	*	*	*	*	*	*	*		*	*		*
$N(2100)$	$1 / 2^{+}$	***	**	***	**	**	*	*		*	*	**			***	
$N(2120)$	$3 / 2^{-}$	***	***	***	**	**		**	*		*	*	*	*	*	
$N(2190)$	$7 / 2^{-}$	****	****	****	****	**	*	**	*	*	*					
$N(2220)$	$9 / 2^{+}$	****	**	****			*	*	*							
$N(2250)$	$9 / 2^{-}$	****	**	****			*	*	*							
$N(2300)$	$1 / 2^{+}$	*		*												
$N(2570)$	$5 / 2^{-}$	*		*												
$N(2600)$	$11 / 2^{-}$	***		***												
$N(2700)$	$13 / 2^{+}$	**		**											E. Klempt,	

- Test of quark models

- Number of baryon states (frozen diquarks?)

Number of states rules out frozen diquarks,
Cascade decays evidence 3-quark dynamics

- $M^{2} \propto L+2 N$ (harmonic oscillator) or $M^{2} \propto L+N$ (string models)

- Parity doublets
- $M\left(J^{+}\right)=M\left(J^{-}\right)$?

Aims

- More baryons:

Hyperons, cascades, charmed baryons, beautiful baryons

$\left(D, L_{N}^{P}\right) S J^{P}$	Singlet	Octet			Decuplet	
$\begin{array}{rrr} \hline\left(56,0_{0}^{+}\right) & \frac{1}{2} & \frac{1}{2}^{+} \\ & \frac{3}{2} & \frac{3}{2}^{+} \\ \hline \end{array}$		$N(939)$	$\Lambda(1116)$	$\Sigma(1193)$	$\Delta(1232)$	$\Sigma(1385)$
$\begin{array}{rll} \hline\left(70,1_{1}^{-}\right) & \frac{1}{2} & \frac{1}{2}^{-} \\ & \frac{3}{2}- \\ & \frac{3}{2} & \frac{1}{2} \\ & & \frac{3}{2}- \\ & & \frac{5}{2}- \\ \hline \end{array}$	$\begin{aligned} & \Lambda(1405) \\ & \Lambda(1520) \end{aligned}$	$\begin{aligned} & \hline N(1535) \\ & N(1520) \\ & N(1650) \\ & N(1700) \\ & N(1675) \\ & \hline \end{aligned}$	$\begin{gathered} \Lambda(1670) \\ \Lambda(1690) \\ \Lambda(1800) \\ \ominus \\ \Lambda(1830) \\ \hline \end{gathered}$	$\begin{gathered} \hline \boldsymbol{\Sigma (1 6 2 0)} \\ \Sigma(1670) \\ \Sigma(1750) \\ \ominus \\ \Sigma(1775) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \Delta(1620) \\ & \Delta(1700) \end{aligned}$	$\begin{aligned} & \hline \Sigma(1900) \dagger \\ & \Sigma(1910) \dagger \end{aligned}$
$\begin{array}{r} \left(56,0_{2}^{+}\right) \\ \hline \frac{1}{2} \\ \frac{1}{2}^{2} \\ \frac{1}{2}^{+} \\ \frac{3}{2}^{+} \\ \hline \end{array}$		$N(1440)$	$\Lambda(1600)$	$\Sigma(1660)$	$\Delta(1600)$	$\Sigma(1780)$
$\begin{aligned} & \hline\left(70,0_{2}^{+}\right) \frac{1}{2} \\ & \frac{1}{2}^{+} \\ & \frac{3}{2} \frac{3}{2}^{+} \\ & \hline \end{aligned}$	$\Lambda(1710)$	$N(1710)$	$\Lambda(1810)$	$\Sigma(1880)$	$\Delta(1750)$	\ominus
$\begin{array}{rrr} \hline\left(56,2_{2}^{+}\right) & \frac{1}{2} & \frac{3}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} & \frac{5}{2} \\ & \frac{3}{2} \\ & \frac{3}{2} & 1_{2}^{+} \\ & \frac{3}{2} & \frac{3}{2} \\ & \frac{3}{2} \\ & \frac{3}{2} & \frac{5}{2} \\ & \frac{3}{2} & \frac{7}{2} \\ \hline \end{array}$		$\begin{aligned} & N(1720) \\ & N(1680) \end{aligned}$	$\begin{aligned} & \Lambda(1890) \\ & \Lambda(1820) \end{aligned}$	$\begin{aligned} & \Sigma(1940) \\ & \Sigma(1915) \end{aligned}$	$\begin{aligned} & \Delta(1910) \\ & \Delta(1920) \\ & \Delta(1905) \\ & \Delta(1950) \\ & \hline \end{aligned}$	$\begin{aligned} & \Sigma(2080) \\ & \Sigma(2070) \\ & \Sigma(2030) \\ & \hline \end{aligned}$

	$\begin{aligned} & \Lambda(2070) \\ & \Lambda(2110) \end{aligned}$		$\begin{gathered} \ominus \\ \ominus \\ \ominus \\ \ominus \\ \ominus \\ \Lambda(2085) \\ \hline \end{gathered}$	$\begin{aligned} & \ominus \\ & \hline \end{aligned}$	$\stackrel{\ominus}{\Delta(2000)}$	$\begin{aligned} & \ominus \\ & \ominus \end{aligned}$
$\begin{aligned} & \hline\left(20,1_{2}^{+}\right) \frac{1}{2} \\ & \frac{1}{2}+ \\ & \frac{3}{2}+ \\ & 5^{+} \\ & \hline \end{aligned}$	$\begin{aligned} & \ominus \\ & \ominus \\ & \ominus \end{aligned}$	$\begin{aligned} & \ominus \\ & \ominus \end{aligned}$	$\begin{aligned} & \ominus \\ & \ominus \end{aligned}$	$\begin{aligned} & \ominus \\ & \ominus \end{aligned}$		
		$\begin{aligned} & N(1895) \\ & N(1875) \end{aligned}$	$\begin{aligned} & \Lambda(2000) \\ & \Lambda(2050) \end{aligned}$	$\begin{aligned} & \Sigma(1900) \dagger \\ & \Sigma(1910) \dagger \end{aligned}$	$\begin{aligned} & \Delta(1900) \\ & \Delta(1940) \\ & \Delta(1930) \end{aligned}$	$\begin{aligned} & \Sigma(2110) \dagger \\ & \Sigma(2010) \dagger \end{aligned}$
$\begin{array}{r} \left(70,3_{3}^{--}\right) \frac{1}{2} \frac{5_{2}^{-}}{2-} \\ \frac{7}{2}^{-} \end{array}$	$\begin{aligned} & \Lambda(2080) \\ & \Lambda(2100) \\ & \hline \end{aligned}$	$\begin{aligned} & N(2060) \\ & N(2190) \\ & \hline \end{aligned}$	$\begin{aligned} & \ominus \\ & \ominus \end{aligned}$	$\Sigma(2100)$	$\Delta(2200)$	$\begin{aligned} & \ominus \\ & \ominus \\ & \hline \end{aligned}$

Caution:

- Are there "bumps" beyond the quark model?
$\boldsymbol{P}_{c}^{\prime} \boldsymbol{s} \rightarrow \boldsymbol{J} / \psi \boldsymbol{N}, \mathbf{N}(1685 \rightarrow \mathbf{N} \eta$ $\Lambda(1380) \mathbf{1 / 2 -}+\Lambda(1405) 1 / \mathbf{2}^{-}$
- Nature of "bumps":

True resonance or rescattering? Factorization of prod. and decay

Quark-model state or dynamically generated resonances? Weinberg criterium

(Baryon plus meson) and ($q 9 q$) can be different sets of wave functions. The true wave function is a superposition! There is no extra state, e.g. there is only one $N(1535) 1 / 2^{-}$.

Round table: Present and future of hadron spectroscopy

Feng-Kun Guo
 Institute of Theoretical Physics, CAS

Hidden-charm

Hidden-charm spectrum: One of the foci of hadron spectroscopy at present and in the near future

Hidden-charm: spectrum to be corrected

- Many charmonium-like structures, some are close to thresholds, and the others do not. Any pattern?
- In most cases, resonance parameters extracted using Breit-Wigner
- Coupled channels and thresholds not considered

Molecular spectrum predicted in
X.-K. Dong, FKG, B.-S. Zou, Progr.Phys. 41 (2021) 65 [arXiv:2101.01021]

Hidden-charm: spectrum to be corrected

- Many charmonium-like structures, some are close to thresholds, and the others do not. Any pattern?
- In most cases, resonance parameters extracted using Breit-Wigner
- Unitarity: the same resonance may behave completely different in different processes

Line shapes of the same poles in different processes X.-K. Dong, FKG, B.-S. Zou, PRL126,152001(2021)
E.g., $f_{0}(980)$: peak in $J / \psi \rightarrow \phi \pi^{+} \pi^{-}$, dip in $J / \psi \rightarrow \omega \pi^{+} \pi^{-}$

BES, PLB607(2005)243

$$
K \bar{K} \rightarrow \pi \pi
$$

BES, PLB598(2004)149
$\pi \pi \rightarrow \pi \pi$

Hidden-charm: spectrum to be corrected

E.g., $Z_{c s}(3985) @$ BESIII;

BESIII, PRL 126, 102001 (2021);
talk by P.-G. Ping, Session-Exotics, 29.07

$Z_{c s}(4000,4220) @ L H C b$
LHCb, arXiv: 2103.01803

$$
\begin{aligned}
& D_{S} \bar{D}^{*}, D \bar{D}_{S}^{*}
\end{aligned}
$$

Ortega, Entem, Fernandez, 2103.07781; talk by Ortega, Session-Exotics, 28.07

Hidden-charm: spectrum to be corrected

- Many charmonium-like structures, some are close to thresholds, and the others do not. Any pattern?
- In most cases, resonance parameters extracted using Breit-Wigner
$\boldsymbol{\square}$ Triangle singularities not considered

\square Triangle singularities are sensitive to kinematic variables \Rightarrow energy dependence, more processes
- Narrow peaks for S-wave coupling Review: FKG, X.-H. Liu, S. Sakai, PPNP112, 103757 (2020)

Talks:

- P_{c} states:
E. Swanson, Session-Exotics, 28.07;
S. Nakamura, Session-Exotics, 28.07;
- In production of X (3872):
L. He, Session-Exotics, 28.07;
- $d^{*}(2380)$:
R. Molina, Session-baryon, 27.07;
- $a_{1}(1420)$:
M. Wagner, Session-Exotics, 31.07;
- Structure at $M_{p \eta} \approx 1710 \mathrm{MeV}$:
M. Nanova, Session-Baryon, 28.07;
- $\ln p \Sigma^{-} \rightarrow K^{-} d$:
A. Feijoo Aliau, Session-Baryon, 31.07;

Round table on "present and future of hadron spectroscopy" - lattice QCD

Christopher Thomas, University of Cambridge
c.e.thomas@damtp.cam.ac.uk

19th International Conference on Hadron Spectroscopy and Structure
(Hadron 2021), 26 July - 1 August 2021

Present and future - lattice QCD - 1

- Precise results for low-lying (stable) hadrons in each flavour sector, physical quark masses, $a \rightarrow 0$, isospin breaking ($m_{u} \neq m_{d}$ and QED).
- Huge progress in using lattice QCD to study resonances etc in hadron-hadron scattering in the last decade.
- ρ resonance in (approximately) elastic $\pi \pi$ - many calculations by different groups, physical quark masses, $a \rightarrow 0$.
- Other elastic scattering channels, e.g. $K \pi, D \pi, D K$
- Coupled-channel scattering, e.g. light scalars, b_{1}, π_{1}
[Plenary by Dave Wilson on Thursday and parallel talks]

Present and future - lattice QCD - 2

- Charmonium and bottomonium sector, "XYZ"s - very limited calculations so far.
- Exotic flavour: $\mathrm{J}^{\mathrm{P}}=1^{+} \bar{b} \bar{b} u d(\mathrm{I}=0), \bar{b} \bar{b} u s$ bound states
- charm analogues, resonances?
[Many parallel talks at Lattice 2021, e.g. Brian Colquhoun, Nilmani Mathur, Martin Pflaumer]
- Baryon-meson and baryon-baryon systems, e.g. Roper, Δ, deuteron, H dibaryon, P_{c} - so far conclusions less clear.
[Plenary by Ben Hörz at Lattice 2021]
- Glueballs?

Present and future - lattice QCD - 3

- Formulation exists for 3-hadron scattering (for now some restrictions); so far only a few applications (e.g. l=3 $\pi \pi \pi$ and $\mathrm{I}=3 / 2 \mathrm{KKK})$. Connection with experimental analyses.
[Plenary by Fernando Romero-Lopez on Thursday and parallel talks]
- Additional probes/tests from form factors and transitions. Formulation exists for resonances, very few applications.
- Lattice QCD can provide other interesting ways to probe the physics, e.g. by varying light-quark mass $\left(m_{\pi}\right), S U(3)_{F}$ symmetry.

Questions

\square What is the dominant mechanism for J / ψ near-threshold production?

1) Production mechanism in most literature assumed to be VMD
2) The current reconciling the GlueX and LHCb results on P_{c} relies on VMD, leading to an upper limit of the $P_{c} \rightarrow J / \psi p$ branching fraction. If the mechanism is different, the Br limits would be different.

> model dependent upper
limits at 90% CL
$B R\left(P_{c}(4312) \rightarrow J / \psi p\right)<4.6 \%$
$B R\left(P_{c}(4440) \rightarrow J / \psi p\right)<2.3 \%$
$B R\left(P_{c}(4457) \rightarrow J / \psi p\right)<3.8 \%$

Taken from talk by P. Pauli, 29.07
GlueX, PRL123, 072001 (2019)

M.-L. Du, V. Baru, FKG, C. Hanhart, U.-G. Meißner, A. Nefediev, I. Strakovsky, EPJC80(2020)1053
\square As for the exotic π_{1} on lattice, a $\bar{q} G q$ operator is needed to get the correct mass, and it couples strongly to $b_{1} \pi$ [talk by D. Wilson, 29.07]; as for $X(3872)$, both $\bar{c} c$ and $D \bar{D}^{*}$ operators are needed [Prelovsek, Leskovec, PRL111, 192001, 2013]. On the other hand, the coupling contains structure information. How can we learn about internal structure of the hadron states from such lattice information?

